1
|
Wang K, Li W, Cui H, Qin S. Phylogenetic distribution and characterization of conserved C-di-GMP metabolizing proteins in filamentous cyanobacterium Arthrospira. Gene 2024; 927:148643. [PMID: 38844269 DOI: 10.1016/j.gene.2024.148643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger in bacteria that regulates multiple biological functions, including biofilm formation, virulence, and intercellular communication. However, c-di-GMP signaling is virtually unknown in economically important filamentous cyanobacteria, Arthrospira. In this study, we predicted 31 genes encoding GGDEF-domain proteins from A. platensis NIES39 as potential diguanylate cyclases (DGCs). Phylogenetic distribution analysis showed five genes (RS09460, RS04865, RS26155, M01840, and E02220) with highly conserved distribution across 25 Arthrospira strains. Adc1 encoded by RS09460 was further characterized as a typical DGC. By establishing the genetic transformation system of Arthrospira, we demonstrated that the overexpression of Adc1 promoted the production of extracellular polymeric substances (EPS), which in turn caused the aggregation of filaments. We also confirmed that RS04865 and RS26155 may encode active DGCs, while enzymatic activity assays showed that proteins encoded by M01840 and E02220 have phosphodiesterase (PDE) activity. Meta-analysis revealed that the expression profiles of RS09460 and RS04865 were unaffected under 31 conditions, suggesting that they may function as conserved genes in maintaining the basal level of c-di-GMP in Arthrospira. In summary, this report will provide the basis for further studies of c-di-GMP signal in Arthrospira.
Collapse
Affiliation(s)
- Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenjun Li
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Wang K, Li W, Cui H, Qin S. Phylogenetic Analysis and Characterization of Diguanylate Cyclase and Phosphodiesterase in Planktonic Filamentous Cyanobacterium Arthrospira sp. Int J Mol Sci 2023; 24:15210. [PMID: 37894891 PMCID: PMC10607523 DOI: 10.3390/ijms242015210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger of intracellular communication in bacterial species, which widely modulates diverse cellular processes. However, little is known about the c-di-GMP network in filamentous multicellular cyanobacteria. In this study, we preliminarily investigated the c-di-GMP turnover proteins in Arthrospira based on published protein data. Bioinformatics results indicate the presence of at least 149 potential turnover proteins in five Arthrospira subspecies. Some proteins are highly conserved in all tested Arthrospira, whereas others are specifically found only in certain subspecies. To further validate the protein catalytic activity, we constructed a riboswitch-based c-di-GMP expression assay system in Escherichia coli and confirmed that a GGDEF domain protein, Adc11, exhibits potential diguanylate cyclase activity. Moreover, we also evaluated a protein with a conserved HD-GYP domain, Ahd1, the expression of which significantly improved the swimming ability of E. coli. Enzyme-linked immunosorbent assay also showed that overexpression of Ahd1 reduced the intracellular concentration of c-di-GMP, which is presumed to exhibit phosphodiesterase activity. Notably, meta-analyses of transcriptomes suggest that Adc11 and Ahd1 are invariable. Overall, this work confirms the possible existence of a functional c-di-GMP network in Arthrospira, which will provide support for the revelation of the biological function of the c-di-GMP system in Arthrospira.
Collapse
Affiliation(s)
- Kang Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
| |
Collapse
|
3
|
Römling U. Cyclic di-GMP signaling-Where did you come from and where will you go? Mol Microbiol 2023; 120:564-574. [PMID: 37427497 DOI: 10.1111/mmi.15119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Microbes including bacteria are required to respond to their often continuously changing ecological niches in order to survive. While many signaling molecules are produced as seemingly circumstantial byproducts of common biochemical reactions, there are a few second messenger signaling systems such as the ubiquitous cyclic di-GMP second messenger system that arise through the synthesis of dedicated multidomain enzymes triggered by multiple diverse external and internal signals. Being one of the most numerous and widespread signaling system in bacteria, cyclic di-GMP signaling contributes to adjust physiological and metabolic responses in all available ecological niches. Those niches range from deep-sea and hydrothermal springs to the intracellular environment in human immune cells such as macrophages. This outmost adaptability is possible by the modularity of the cyclic di-GMP turnover proteins which enables coupling of enzymatic activity to the diversity of sensory domains and the flexibility in cyclic di-GMP binding sites. Nevertheless, commonly regulated fundamental microbial behavior include biofilm formation, motility, and acute and chronic virulence. The dedicated domains carrying out the enzymatic activity indicate an early evolutionary origin and diversification of "bona fide" second messengers such as cyclic di-GMP which is estimated to have been present in the last universal common ancestor of archaea and bacteria and maintained in the bacterial kingdom until today. This perspective article addresses aspects of our current view on the cyclic di-GMP signaling system and points to knowledge gaps that still await answers.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Khan F, Jeong GJ, Tabassum N, Kim YM. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun Signal 2023; 21:259. [PMID: 37749602 PMCID: PMC10519070 DOI: 10.1186/s12964-023-01263-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
5
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
6
|
Vongkampang T, Sreenivas K, Grey C, van Niel EWJ. Immobilization techniques improve volumetric hydrogen productivity of Caldicellulosiruptor species in a modified continuous stirred tank reactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:25. [PMID: 36793132 PMCID: PMC9933333 DOI: 10.1186/s13068-023-02273-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Co-cultures and cell immobilization have been used for retaining biomass in a bioreactor, with the aim to improve the volumetric hydrogen productivity (QH2). Caldicellulosiruptor kronotskyensis is a strong cellulolytic species that possesses tāpirin proteins for attaching on lignocellulosic materials. C. owensensis has its reputation as a biofilm former. It was investigated whether continuous co-cultures of these two species with different types of carriers can improve the QH2. RESULTS QH2 up to 30 ± 0.2 mmol L-1 h-1 was obtained during pure culture of C. kronotskyensis with combined acrylic fibres and chitosan. In addition, the yield of hydrogen was 2.95 ± 0.1 mol H2 mol-1 sugars at a dilution rate (D) of 0.3 h-1. However, the second-best QH2 26.4 ± 1.9 mmol L-1 h-1 and 25.4 ± 0.6 mmol L-1 h-1 were obtained with a co-culture of C. kronotskyensis and C. owensensis with acrylic fibres only and a pure culture of C. kronotskyensis with acrylic fibres, respectively. Interestingly, the population dynamics revealed that C. kronotskyensis was the dominant species in the biofilm fraction, whereas C. owensensis was the dominant species in the planktonic phase. The highest amount of c-di-GMP (260 ± 27.3 µM at a D of 0.2 h-1) were found with the co-culture of C. kronotskyensis and C. owensensis without a carrier. This could be due to Caldicellulosiruptor producing c-di-GMP as a second messenger for regulation of the biofilms under the high dilution rate (D) to prevent washout. CONCLUSIONS The cell immobilization strategy using a combination of carriers exhibited a promising approach to enhance the QH2. The QH2 obtained during the continuous culture of C. kronotskyensis with combined acrylic fibres and chitosan gave the highest QH2 among the pure culture and mixed cultures of Caldicellulosiruptor in the current study. Moreover, it was the highest QH2 among all cultures of Caldicellulosiruptor species studied so far.
Collapse
Affiliation(s)
- Thitiwut Vongkampang
- Department of Applied Microbiology, Lund University, 124, 221 00, Lund, Sweden. .,Biorefinery and Functional Food Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Kantharawichai, Mahasarakham, 44150, Thailand.
| | - Krishnan Sreenivas
- grid.4514.40000 0001 0930 2361Department of Applied Microbiology, Lund University, 124, 221 00 Lund, Sweden
| | - Carl Grey
- grid.4514.40000 0001 0930 2361Department of Biotechnology, Lund University, 124, 221 00 Lund, Sweden
| | - Ed W. J. van Niel
- grid.4514.40000 0001 0930 2361Department of Applied Microbiology, Lund University, 124, 221 00 Lund, Sweden
| |
Collapse
|
7
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Li F, Cao L, Bähre H, Kim SK, Schroeder K, Jonas K, Koonce K, Mekonnen SA, Mohanty S, Bai F, Brauner A, Lee VT, Rohde M, Römling U. Patatin-like phospholipase CapV in Escherichia coli - morphological and physiological effects of one amino acid substitution. NPJ Biofilms Microbiomes 2022; 8:39. [PMID: 35546554 PMCID: PMC9095652 DOI: 10.1038/s41522-022-00294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In rod-shaped bacteria, morphological plasticity occurs in response to stress, which blocks cell division to promote filamentation. We demonstrate here that overexpression of the patatin-like phospholipase variant CapVQ329R, but not CapV, causes pronounced sulA-independent pyridoxine-inhibited cell filamentation in the Escherichia coli K-12-derivative MG1655 associated with restriction of flagella production and swimming motility. Conserved amino acids in canonical patatin-like phospholipase A motifs, but not the nucleophilic serine, are required to mediate CapVQ329R phenotypes. Furthermore, CapVQ329R production substantially alters the lipidome and colony morphotype including rdar biofilm formation with modulation of the production of the biofilm activator CsgD, and affects additional bacterial traits such as the efficiency of phage infection and antimicrobial susceptibility. Moreover, genetically diverse commensal and pathogenic E. coli strains and Salmonella typhimurium responded with cell filamentation and modulation in colony morphotype formation to CapVQ329R expression. In conclusion, this work identifies the CapV variant CapVQ329R as a pleiotropic regulator, emphasizes a scaffold function for patatin-like phospholipases, and highlights the impact of the substitution of a single conserved amino acid for protein functionality and alteration of host physiology.
Collapse
Affiliation(s)
- Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Lianying Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Kristen Schroeder
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kira Koonce
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Solomon A Mekonnen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
9
|
Chen H, Tian Y, Hu Z, Wang C, Xie P, Chen L, Yang F, Liang Y, Mu C, Wei C, Ting YP, Qiu G, Song Y. Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) mediated membrane fouling in membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Lamprokostopoulou A, Römling U. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. J Innate Immun 2021; 14:275-292. [PMID: 34775379 PMCID: PMC9275015 DOI: 10.1159/000519573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, Salmonella Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using S. Typhimurium as an example.
Collapse
Affiliation(s)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|