1
|
Xie F, Hao Y, Liu Y, Bao J, Wang R, Chi X, Wang T, Yu S, Jin Y, Li L, Jiang Y, Zhang D, Yan L, Ni T. From Synergy to Monotherapy: Discovery of Novel 2,4,6-Trisubstituted Triazine Hydrazone Derivatives with Potent Antifungal Potency In Vitro and In Vivo. J Med Chem 2024; 67:4007-4025. [PMID: 38381075 DOI: 10.1021/acs.jmedchem.3c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Invasive fungal infections pose a serious threat to public health and are associated with high mortality and incidence rates. The development of novel antifungal agents is urgently needed. Based on hit-to-lead optimization, a series of 2,4,6-trisubstituted triazine hydrazone compounds were designed, synthesized, and biological evaluation was performed, leading to the identification of compound 28 with excellent in vitro synergy (FICI range: 0.094-0.38) and improved monotherapy potency against fluconazole-resistant Candida albicans and Candida auris (MIC range: 1.0-16.0 μg/mL). Moreover, 28 exhibited broad-spectrum antifungal activity against multiple pathogenic strains. Furthermore, 28 could inhibit hyphal and biofilm formation, which may be related to its ability to disrupt the fungal cell wall. Additionally, 28 significantly reduced the CFU in a mouse model of disseminated infection with candidiasis at a dose of 10 mg/kg. Overall, the triazine-based hydrazone compound 28 with low cytotoxicity, hemolysis, and favorable ADME/T characteristics represents a promising lead to further investigation.
Collapse
Affiliation(s)
- Fei Xie
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yu Liu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Ruina Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China
| | - Ting Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Shichong Yu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yongsheng Jin
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Dazhi Zhang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Lan Yan
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| |
Collapse
|
2
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|