1
|
Sundararaman SA, Miller JJ, Daley EC, O'Brien KA, Kasak P, Daniels AM, Edwards RL, Heidel KM, Bague DA, Wilson MA, Koelper AJ, Kourtoglou EC, White AD, August SA, Apple GA, Rouamba RW, Durand AJ, Esteb JJ, Muller FL, Johnson RJ, Hoops GC, Dowd CS, Odom John AR. Prodrug activation in malaria parasites mediated by an imported erythrocyte esterase, acylpeptide hydrolase (APEH). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610542. [PMID: 39257815 PMCID: PMC11383709 DOI: 10.1101/2024.08.30.610542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The continued emergence of antimalarial drug resistance highlights the need to develop new antimalarial therapies. Unfortunately, new drug development is often hampered by poor drug-like properties of lead compounds. Prodrugging temporarily masks undesirable compound features, improving bioavailability and target penetration. We have found that lipophilic diester prodrugs of phosphonic acid antibiotics, such as fosmidomycin, exhibit significantly higher antimalarial potency than their parent compounds (1). However, the activating enzymes for these prodrugs were unknown. Here, we show that an erythrocyte enzyme, acylpeptide hydrolase (APEH) is the major activating enzyme of multiple lipophilic ester prodrugs. Surprisingly, this enzyme is taken up by the malaria parasite, Plasmodium falciparum, where it localizes to the parasite cytoplasm and retains enzymatic activity. Using a novel fluorogenic ester library, we characterize the structure activity relationship of APEH, and compare it to that of P. falciparum esterases. We show that parasite-internalized APEH plays an important role in the activation of substrates with branching at the alpha carbon, in keeping with its exopeptidase activity. Our findings highlight a novel mechanism for antimicrobial prodrug activation, relying on a host-derived enzyme to yield activation at a microbial target. Mutations in prodrug activating enzymes are a common mechanism for antimicrobial drug resistance (2-4). Leveraging an internalized host enzyme would circumvent this, enabling the design of prodrugs with higher barriers to drug resistance.
Collapse
Affiliation(s)
- S A Sundararaman
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J J Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E C Daley
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - K A O'Brien
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - P Kasak
- College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - A M Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, USA
| | - R L Edwards
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
- Omniose, Saint Louis, MO, USA
| | - K M Heidel
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington DC, USA
| | - D A Bague
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington DC, USA
| | - M A Wilson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - A J Koelper
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - E C Kourtoglou
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - A D White
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - S A August
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - G A Apple
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - R W Rouamba
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - A J Durand
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - J J Esteb
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - F L Muller
- Lindonlight Collective, Houston, TX, USA
| | - R J Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - G C Hoops
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - C S Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington DC, USA
| | - A R Odom John
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Goss AL, Shudick RE, Johnson RJ. Shifting Mycobacterial Serine Hydrolase Activity Visualized Using Multi-Layer In-Gel Activity Assays. Molecules 2024; 29:3386. [PMID: 39064965 PMCID: PMC11279797 DOI: 10.3390/molecules29143386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity.
Collapse
Affiliation(s)
| | | | - R. Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| |
Collapse
|
3
|
Harris WT, Altieri I, Gieck I, Johnson RJ. A conserved but structurally divergent loop in acyl protein thioesterase 1 regulates its catalytic activity, ligand binding, and folded stability. Proteins 2024; 92:693-704. [PMID: 38179877 DOI: 10.1002/prot.26661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding β-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/β hydrolase structure and a potential allosteric binding site within human APTs.
Collapse
Affiliation(s)
- William Trey Harris
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Isabelle Altieri
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Isabella Gieck
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Schemenauer D, Pool EH, Raynor SN, Ruiz GP, Goehring LM, Koelper AJ, Wilson MA, Durand AJ, Kourtoglou EC, Larsen EM, Lavis LD, Esteb JJ, Hoops GC, Johnson RJ. Sequence and Structural Motifs Controlling the Broad Substrate Specificity of the Mycobacterial Hormone-Sensitive Lipase LipN. ACS OMEGA 2023; 8:13252-13264. [PMID: 37065048 PMCID: PMC10099132 DOI: 10.1021/acsomega.3c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Mycobacterium tuberculosis has a complex life cycle transitioning between active and dormant growth states depending on environmental conditions. LipN (Rv2970c) is a conserved mycobacterial serine hydrolase with regulated catalytic activity at the interface between active and dormant growth conditions. LipN also catalyzes the xenobiotic degradation of a tertiary ester substrate and contains multiple conserved motifs connected with the ability to catalyze the hydrolysis of difficult tertiary ester substrates. Herein, we expanded a library of fluorogenic ester substrates to include more tertiary and constrained esters and screened 33 fluorogenic substrates for activation by LipN, identifying its unique substrate signature. LipN preferred short, unbranched ester substrates, but had its second highest activity against a heteroaromatic five-membered oxazole ester. Oxazole esters are present in multiple mycobacterial serine hydrolase inhibitors but have not been tested widely as ester substrates. Combined structural modeling, kinetic measurements, and substitutional analysis of LipN showcased a fairly rigid binding pocket preorganized for catalysis of short ester substrates. Substitution of diverse amino acids across the binding pocket significantly impacted the folded stability and catalytic activity of LipN with two conserved motifs (HGGGW and GDSAG) playing interconnected, multidimensional roles in regulating its substrate specificity. Together this detailed substrate specificity profile of LipN illustrates the complex interplay between structure and function in mycobacterial hormone-sensitive lipase homologues and indicates oxazole esters as promising inhibitor and substrate scaffolds for mycobacterial hydrolases.
Collapse
Affiliation(s)
- Daniel
E. Schemenauer
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Emily H. Pool
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Stephanie N. Raynor
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Gabriela P. Ruiz
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Leah M. Goehring
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Andrew J. Koelper
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Madeleine A. Wilson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Anthony J. Durand
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Elexi C. Kourtoglou
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Erik M. Larsen
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Luke D. Lavis
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - John J. Esteb
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Geoffrey C. Hoops
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - R. Jeremy Johnson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| |
Collapse
|
5
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
6
|
Hegde PV, Howe MD, Zimmerman MD, Boshoff HIM, Sharma S, Remache B, Jia Z, Pan Y, Baughn AD, Dartois V, Aldrich CC. Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS). Eur J Med Chem 2022; 232:114201. [PMID: 35219151 PMCID: PMC8941652 DOI: 10.1016/j.ejmech.2022.114201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is one of the world's most deadly infectious diseases resulting in nearly 1.3 million deaths annually and infecting nearly one-quarter of the population. para-Aminosalicylic acid (PAS), an important second-line agent for treating drug-resistant Mycobacterium tuberculosis, has moderate bioavailability and rapid clearance that necessitate high daily doses of up to 12 g per day, which in turn causes severe gastrointestinal disturbances presumably by disruption of gut microbiota and host epithelial cells. We first synthesized a series of alkyl, acyloxy and alkyloxycarbonyloxyalkyl ester prodrugs to increase the oral bioavailability and thereby prevent intestinal accumulation as well as undesirable bioactivation by the gut microbiome to non-natural folate species that exhibit cytotoxicity. The pivoxyl prodrug of PAS was superior to all of the prodrugs examined and showed nearly quantitative absorption. While the conceptually simple prodrug approach improved the oral bioavailability of PAS, it did not address the intrinsic rapid clearance of PAS mediated by N-acetyltransferase-1 (NAT-1). Thus, we next modified the PAS scaffold to reduce NAT-1 catalyzed inactivation by introduction of groups to sterically block N-acetylation and fluorination of the aryl ring of PAS to attenuate N-acetylation by electronically deactivating the para-amino group. Among the mono-fluorinated analogs prepared, 5-fluoro-PAS, exhibited the best activity and an 11-fold decreased rate of inactivation by NAT-1 that translated to a 5-fold improved exposure as measured by area-under-the-curve (AUC) following oral dosing to CD-1 mice. The pivoxyl prodrug and fluorination at the 5-position of PAS address the primary limitations of PAS and have the potential to revitalize this second-line TB drug.
Collapse
Affiliation(s)
- Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Howe
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Remache
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Ziyi Jia
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Anthony D Baughn
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Veronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Hetrick KJ, Raines RT. Assessing and utilizing esterase specificity in antimicrobial prodrug development. Methods Enzymol 2022; 664:199-220. [DOI: 10.1016/bs.mie.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Hetrick KJ, Aguilar Ramos MA, Raines RT. Endogenous Enzymes Enable Antimicrobial Activity. ACS Chem Biol 2021; 16:800-805. [PMID: 33877811 DOI: 10.1021/acschembio.0c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In light of the continued threat of antimicrobial-resistant bacteria, new strategies to expand the repertoire of antimicrobial compounds are necessary. Prodrugs are an underexploited strategy in this effort. Here, we report on the enhanced antimicrobial activity of a prodrug toward bacteria having an enzyme capable of its activation. A screen led us to the sulfurol ester of the antibiotic trans-3-(4-chlorobenzoyl)acrylic acid. An endogenous esterase makes Mycolycibacterium smegmatis sensitive to this prodrug. Candidate esterases were identified, and their heterologous production made Escherichia coli sensitive to the ester prodrug. Taken together, these data suggest a new approach to the development of antimicrobial compounds that takes advantage of endogenous enzymatic activities to target specific bacteria.
Collapse
Affiliation(s)
- Kenton J. Hetrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Miguel A. Aguilar Ramos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
9
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
10
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
11
|
White A, Koelper A, Russell A, Larsen EM, Kim C, Lavis LD, Hoops GC, Johnson RJ. Fluorogenic structure activity library pinpoints molecular variations in substrate specificity of structurally homologous esterases. J Biol Chem 2018; 293:13851-13862. [PMID: 30006352 DOI: 10.1074/jbc.ra118.003972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/11/2018] [Indexed: 01/08/2023] Open
Abstract
Cellular esterases catalyze many essential biological functions by performing hydrolysis reactions on diverse substrates. The promiscuity of esterases complicates assignment of their substrate preferences and biological functions. To identify universal factors controlling esterase substrate recognition, we designed a 32-member structure-activity relationship (SAR) library of fluorogenic ester substrates and used this library to systematically interrogate esterase preference for chain length, branching patterns, and polarity to differentiate common classes of esterase substrates. Two structurally homologous bacterial esterases were screened against this library, refining their previously broad overlapping substrate specificity. Vibrio cholerae esterase ybfF displayed a preference for γ-position thioethers and ethers, whereas Rv0045c from Mycobacterium tuberculosis displayed a preference for branched substrates with and without thioethers. We determined that this substrate differentiation was partially controlled by individual substrate selectivity residues Tyr-119 in ybfF and His-187 in Rv0045c; reciprocal substitution of these residues shifted each esterase's substrate preference. This work demonstrates that the selectivity of esterases is tuned based on transition state stabilization, identifies thioethers as an underutilized functional group for esterase substrates, and provides a rapid method for differentiating structural isozymes. This SAR library could have multifaceted future applications, including in vivo imaging, biocatalyst screening, molecular fingerprinting, and inhibitor design.
Collapse
Affiliation(s)
- Alex White
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Andrew Koelper
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Arielle Russell
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Erik M Larsen
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - Charles Kim
- the Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147-2439
| | - Luke D Lavis
- the Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147-2439
| | - Geoffrey C Hoops
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| | - R Jeremy Johnson
- From the Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208-3443 and
| |
Collapse
|