1
|
Huang GG, Wang HY, Wang XH, Yang T, Zhang XM, Feng CL, Zhao WM, Tang W. Atranorin inhibits Zika virus infection in human glioblastoma cell line SNB-19 via targeting Zika virus envelope protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155343. [PMID: 38290230 DOI: 10.1016/j.phymed.2024.155343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Zika virus (ZIKV) is a single-stranded RNA flavivirus transmitted by mosquitoes. Its infection is associated with neurological complications such as neonatal microcephaly and adult Guillain-Barré syndrome, posing a serious threat to the health of people worldwide. Therefore, there is an urgent need to develop effective anti-ZIKV drugs. Atranorin is a lichen secondary metabolite with a wide range of biological activities, including anti-inflammatory, antibacterial and antioxidant, etc. However, the antiviral activity of atranorin and underlying mechanism has not been fully elucidated. PURPOSE We aimed to determine the anti-ZIKV activity of atranorin in human glioma cell line SNB-19 and investigate the potential mechanism from the perspective of viral life cycle and the host cell functions. METHODS We first established ZIKV-infected human glioma cells (SNB-19) model and used Western Blot, RT-qPCR, immunofluorescence, fluorescence-activated cell sorting (FACS) and plaque assay to evaluate the anti-ZIKV activity of atranorin. Then we assessed the regulation effect of atranorin on ZIKV induced IFN signal pathway activation by RT-qPCR. Afterward, we introduced time-of-addition assay, viral adsorption assay, viral internalization assay and transferrin uptake assay to define which step of ZIKV lifecycle is influenced by atranorin. Finally, we performed virus infectivity assay, molecular docking and thermal shift assay to uncover the target protein of atranorin on ZIKV. RESULTS Our study showed that atranorin could protect SNB-19 cells from ZIKV infection, as evidenced by inhibited viral protein expression and progeny virus yield. Meanwhile, atranorin attenuated the activation of IFN signal pathway and downstream inflammatory response that induced by ZIKV infection. The results of time-of-addition assay indicated that atranorin acted primarily by disturbing the viral entry process. After ruling out the effect of atranorin on AXL receptor tyrosine kinase (AXL) dependent virus adsorption and clathrin-mediated endocytosis, we confirmed that atranorin directly targeted the viral envelope protein and lowered ZIKV infectivity by thermal shift assay and virus infectivity assay respectively. CONCLUSION We found atranorin inhibits ZIKV infection in SNB-19 cells via targeting ZIKV envelope protein. Our study provided an experimental basis for the further development of atranorin and a reference for antiviral drug discovery from natural resources.
Collapse
Affiliation(s)
- Guan-Gen Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hao-Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Han Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Meng Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Chun-Lan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wei-Min Zhao
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Manna S, Das K, Santra S, Nosova EV, Zyryanov GV, Halder S. Structural and Synthetic Aspects of Small Ring Oxa- and Aza-Heterocyclic Ring Systems as Antiviral Activities. Viruses 2023; 15:1826. [PMID: 37766233 PMCID: PMC10536032 DOI: 10.3390/v15091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Antiviral properties of different oxa- and aza-heterocycles are identified and properly correlated with their structural features and discussed in this review article. The primary objective is to explore the activity of such ring systems as antiviral agents, as well as their synthetic routes and biological significance. Eventually, the structure-activity relationship (SAR) of the heterocyclic compounds, along with their salient characteristics are exhibited to build a suitable platform for medicinal chemists and biotechnologists. The synergistic conclusions are extremely important for the introduction of a newer tool for the future drug discovery program.
Collapse
Affiliation(s)
- Sibasish Manna
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
| | - Emily V. Nosova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia; (S.S.); (E.V.N.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
3
|
Feng Y, Yang Y, Zou S, Qiu S, Yang H, Hu Y, Lin G, Yao X, Liu S, Zou M. Identification of alpha-linolenic acid as a broad-spectrum antiviral against zika, dengue, herpes simplex, influenza virus and SARS-CoV-2 infection. Antiviral Res 2023:105666. [PMID: 37429528 DOI: 10.1016/j.antiviral.2023.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Zika virus (ZIKV) has garnered global attention due to its association with severe congenital defects including microcephaly. However, there are no licensed vaccines or drugs against ZIKV infection. Pregnant women have the greatest need for treatment, making drug safety crucial. Alpha-linolenic acid (ALA), a polyunsaturated ω-3 fatty acid, has been used as a health-care product and dietary supplement due to its potential medicinal properties. Here, we demonstrated that ALA inhibits ZIKV infection in cells without loss of cell viability. Time-of-addition assay revealed that ALA interrupts the binding, adsorption, and entry stages of ZIKV replication cycle. The mechanism is probably that ALA disrupts the membrane integrity of the virions to release ZIKV RNA, inhibiting viral infectivity. Further examination revealed that ALA inhibits DENV-2, HSV-1, influenza virus and SARS-CoV-2 infection dose-dependently. ALA is a promising broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Yifei Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Qiu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guifen Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Gao Y, Tai W, Wang X, Jiang S, Debnath AK, Du L, Chen S. A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biol 2022; 20:143. [PMID: 35706035 PMCID: PMC9202104 DOI: 10.1186/s12915-022-01344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Zika virus (ZIKV) and dengue virus (DENV) cause microcephaly and dengue hemorrhagic fever, respectively, leading to severe problems. No effective antiviral agents are approved against infections of these flaviviruses, calling for the need to develop potent therapeutics. We previously identified gossypol as an effective inhibitor against ZIKV and DENV infections, but this compound is toxic and not suitable for in vivo treatment. Results In this study, we showed that gossypol derivative ST087010 exhibited potent and broad-spectrum in vitro inhibitory activity against infections of at least ten ZIKV strains isolated from different hosts, time periods, and countries, as well as DENV-1-4 serotypes, and significantly reduced cytotoxicity compared to gossypol. It presented broad-spectrum in vivo protective efficacy, protecting ZIKV-infected Ifnar1−/− mice from lethal challenge, with increased survival and reduced weight loss. Ifnar1−/− mice treated with this gossypol derivative decreased viral titers in various tissues, including the brain and testis, after infection with ZIKV at different human isolates. Moreover, ST087010 potently blocked ZIKV vertical transmission in pregnant Ifnar1−/− mice, preventing ZIKV-caused fetal death, and it was safe for pregnant mice and their pups. It also protected DENV-2-challenged Ifnar1−/− mice against viral replication by reducing the viral titers in the brain, kidney, heart, and sera. Conclusions Overall, our data indicate the potential for further development of this gossypol derivative as an effective and safe broad-spectrum therapeutic agent to treat ZIKV and DENV diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01344-w.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
In search of suitable protein targets for anti-malarial and anti-dengue drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
7
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
8
|
Abstract
Viral fusion glycoproteins catalyze membrane fusion during viral entry. Unlike most enzymes, however, they lack a conventional active site in which formation or scission of a specific covalent bond is catalyzed. Instead, they drive the membrane fusion reaction by cojoining highly regulated changes in conformation to membrane deformation. Despite the challenges in applying inhibitor design approaches to these proteins, recent advances in knowledge of the structures and mechanisms of viral fusogens have enabled the development of small-molecule inhibitors of both class I and class II viral fusion proteins. Here, we review well-validated inhibitors, including their discovery, targets, and mechanism(s) of action, while highlighting mechanistic similarities and differences. Together, these examples make a compelling case for small-molecule inhibitors as tools for probing the mechanisms of viral glycoprotein-mediated fusion and for viral glycoproteins as druggable targets.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Current affiliation: Department of Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305, USA;
| |
Collapse
|
9
|
Naresh P, Selvaraj A, Shyam Sundar P, Murugesan S, Sathianarayanan S, Namboori P K K, Jubie S. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J Biomol Struct Dyn 2020; 40:4866-4878. [PMID: 33345726 DOI: 10.1080/07391102.2020.1862707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dengue virus enters the cell by receptor-mediated endocytosis followed by a viral envelope (DENVE) protein-mediated membrane fusion. A small detergent molecule n-octyl-β-D-glucoside (βOG) occupies the hydrophobic pocket which is located in the hinge region plays a major role in the rearrangement. It has been reported that mutations occurred in this binding pocket lead to the alterations of pH threshold for fusion. In addition to this event, the protonation of histidine residues present in the hydrophobic pocket would also impart the conformational change of the E protein evidence this pocket as a promising target. The present study identified novel cinnamic acid analogs as significant blockers of the hydrophobic pocket through molecular modeling studies against DENVE. A library of seventy-two analogs of cinnamic acid was undertaken for the discovery process of DENV inhibitors. A Molecular docking study was used to analyze the binding mechanism between these compounds and DENV followed by ADMET prediction. Binding energies were predicted by the MMGBSA study. The Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. The compounds CA and SCA derivatives have been tested against HSV-1 & 2 viruses. From the computational results, the compounds CA1, CA2, SCA 60, SCA 57, SCA 37, SCA 58, and SCA 14 exhibited favorable interaction energy. The compounds have in-vitro antiviral activity; the results clearly indicate that the compounds showed the activity against both the viruses (HSV-1 & HSV-2). Our study provides valuable information on the discovery of small molecules DENVE inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Naresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - A Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - P Shyam Sundar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - S Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India
| | - S Sathianarayanan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Ponekkara, Kochi, Kerala, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research Lab, Amrita Vishwavidyapeetham, Coimbatore, Tamilnadu, India
| | - S Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| |
Collapse
|
10
|
Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020; 15:2391-2419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Infections by flaviviruses, such as Dengue, West Nile, Yellow Fever and Zika viruses, represent a growing risk for global health. There are vaccines only for few flaviviruses while no effective treatments are available. Flaviviruses share epidemiological, structural, and ecologic features and often different viruses can co-infect the same host. Therefore, the identification of broad-spectrum inhibitors is highly desirable either for known flaviviruses or for viruses that likely will emerge in the future. Strategies targeting both virus and host factors have been pursued to identify broad-spectrum antiflaviviral agents. In this review, we describe the most promising and best characterized targets and their relative broad-spectrum inhibitors, identified by drug repurposing/libraries screenings and by focused medicinal chemistry campaigns. Finally, we discuss about future strategies to identify new broad-spectrum antiflavivirus agents.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
11
|
Telehany SM, Humby MS, McGee TD, Riley SP, Jacobs A, Rizzo RC. Identification of Zika Virus Inhibitors Using Homology Modeling and Similarity-Based Screening to Target Glycoprotein E. Biochemistry 2020; 59:3709-3724. [PMID: 32876433 PMCID: PMC7598728 DOI: 10.1021/acs.biochem.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The
World Health Organization has designated Zika virus (ZIKV)
as a dangerous, mosquito-borne pathogen that can cause severe developmental
defects. The primary goal of this work was identification of small
molecules as potential ZIKV inhibitors that target the viral envelope
glycoprotein (ZIKV E) involved in membrane fusion and viral entry.
A homology model of ZIKV E containing the small molecule β-octyl
glucoside (BOG) was constructed, on the basis of an analogous X-ray
structure from dengue virus, and >4 million commercially available
compounds were computationally screened using the program DOCK6. A
key feature of the screen involved the use of similarity-based scoring
to identify inhibitor candidates that make similar interaction energy
patterns (molecular footprints) as the BOG reference. Fifty-three
prioritized compounds underwent experimental testing using cytotoxicity,
cell viability, and tissue culture infectious dose 50% (TCID50) assays.
Encouragingly, relative to a known control (NITD008), six compounds
were active in both the cell viability assay and the TCID50 infectivity
assay, and they showed activity in a third caspase activity assay.
In particular, compounds 8 and 15 (tested
at 25 μM) and compound 43 (tested at 10 μM)
appeared to provide significant protection to infected cells, indicative
of anti-ZIKV activity. Overall, the study highlights how similarity-based
scoring can be leveraged to computationally identify potential ZIKV
E inhibitors that mimic a known reference (in this case BOG), and
the experimentally verified hits provide a strong starting point for
further refinement and optimization efforts.
Collapse
Affiliation(s)
- Stephen M Telehany
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - T Dwight McGee
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sean P Riley
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, United States
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States.,Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, United States.,Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
12
|
Lin HH, Huang LM, Wu SC. A quantitative luciferase-based cell-cell fusion assay to measure four-serotype dengue virus E protein-triggered membrane fusion. Hum Vaccin Immunother 2020; 16:2176-2182. [PMID: 32530355 PMCID: PMC7553686 DOI: 10.1080/21645515.2020.1748989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The class II membrane fusion induced by flavivirus E proteins is a unique pH-dependent membrane fusion process differently from the class I or III membrane fusion by other enveloped virus proteins. The fusion peptide on the DII of the flavivirus E proteins can insert into the cell membrane as a cell entry process besides the receptor bindings. A traditional assay using C6/36 mosquito cells infected by dengue viruses has been previously reported but did not provide efficient quantitation to measure the virus-triggered membrane fusion. Here we reported the development of a quantitative cell fusion assay for four serotypes of dengue viruses and the recently emerged Zika viruses. We used a pCI-neo vector encoding the prME genes of dengue and Zika viruses and investigated the cell fusion in transfected 293, Vero and CHO cells. Donor cells were co-transfection of the prME genes of dengue and Zika prME gene and T7 RNA polymerase to react with the indicator cells transfected with the luciferase gene under the control of the T7 promoter. Quantification of the virus-induced cell fusion was determined by the luciferase expression levels under a switch of pH from 7.4 to 5.4 in the co-cultured donor and indicator cells. The quantitative luciferase-based assay was applied to measure the anti-fusion activity by two monoclonal antibodies mAb 4G2 and mAb DB42 against dengue virus infections. This assay could quality as a quantitative bioassay for testing the potency of anti-fusion monoclonal antibodies.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Institute of Biotechnology, National Tsing Hua University , Hsinchu, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children's Hospital , Taipei, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University , Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University , Hsinchu, Taiwan
| |
Collapse
|
13
|
Ramanathan HN, Zhang S, Douam F, Mar KB, Chang J, Yang PL, Schoggins JW, Ploss A, Lindenbach BD. A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating. mBio 2020; 11:e00467-20. [PMID: 32291299 PMCID: PMC7157815 DOI: 10.1128/mbio.00467-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jinhong Chang
- Department of Experimental Therapeutics, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA
| | - Priscilla L Yang
- Department of Microbiology and the Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Gao Y, Tai W, Wang N, Li X, Jiang S, Debnath AK, Du L, Chen S. Identification of Novel Natural Products as Effective and Broad-Spectrum Anti-Zika Virus Inhibitors. Viruses 2019; 11:E1019. [PMID: 31684080 PMCID: PMC6893700 DOI: 10.3390/v11111019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy leads to severe congenital Zika syndrome, which includes microcephaly and other neurological malformations. No therapeutic agents have, so far, been approved for the treatment of ZIKV infection in humans; as such, there is a need for a continuous effort to develop effective and safe antiviral drugs to treat ZIKV-caused diseases. After screening a natural product library, we have herein identified four natural products with anti-ZIKV activity in Vero E6 cells, including gossypol, curcumin, digitonin, and conessine. Except for curcumin, the other three natural products have not been reported before to have anti-ZIKV activity. Among them, gossypol exhibited the strongest inhibitory activity against almost all 10 ZIKV strains tested, including six recent epidemic human strains. The mechanistic study indicated that gossypol could neutralize ZIKV infection by targeting the envelope protein domain III (EDIII) of ZIKV. In contrast, the other natural products inhibited ZIKV infection by targeting the host cell or cell-associated entry and replication stages of ZIKV. A combination of gossypol with any of the three natural products identified in this study, as well as with bortezomib, a previously reported anti-ZIKV compound, exhibited significant combinatorial inhibitory effects against three ZIKV human strains tested. Importantly, gossypol also demonstrated marked potency against all four serotypes of dengue virus (DENV) human strains in vitro. Taken together, this study indicates the potential for further development of these natural products, particularly gossypol, as the lead compound or broad-spectrum inhibitors against ZIKV and other flaviviruses, such as DENV.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Xiang Li
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Yang CC, Hu HS, Lin HM, Wu PS, Wu RH, Tian JN, Wu SH, Tsou LK, Song JS, Chen HW, Chern JH, Chen CT, Yueh A. A novel flavivirus entry inhibitor, BP34610, discovered through high-throughput screening with dengue reporter viruses. Antiviral Res 2019; 172:104636. [PMID: 31654671 DOI: 10.1016/j.antiviral.2019.104636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 10/20/2019] [Indexed: 12/01/2022]
Abstract
Dengue virus (DENV) is a global health problem that affects approximately 3.9 billion people worldwide. Since safety concerns were raised for the only licensed vaccine, Dengvaxia, and since the present treatment is only supportive care, the development of more effective therapeutic anti-DENV agents is urgently needed. In this report, we identified a potential small-molecule inhibitor, BP34610, via cell-based high-throughput screening (HTS) of 12,000 compounds using DENV-2 reporter viruses. BP34610 reduced the virus yields of type 2 DENV-infected cells with a 50% effective concentration (EC50) and selectivity index value of 0.48 ± 0.06 μM and 197, respectively. Without detectable cytotoxicity, the compound inhibited not only all four serotypes of DENV but also Japanese encephalitis virus (JEV). Time-of-addition experiments suggested that BP34610 may act at an early stage of DENV virus infection. Sequencing analyses of several individual clones derived from BP34610-resistant viruses revealed a consensus amino acid substitution (S397P) in the N-terminal stem region of the E protein. Introduction of S397P into the DENV reporter viruses conferred an over 14.8-fold EC90 shift for BP34610. Importantly, the combination of BP34610 with a viral replication inhibitor, ribavirin, displayed synergistic enhancement of anti-DENV-2 activity. Our results identify an effective small-molecule inhibitor, BP34610, which likely targets the DENV E protein. BP34610 could be developed as an anti-flavivirus agent in the future.
Collapse
Affiliation(s)
- Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Han-Shu Hu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Hui-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Pei-Shan Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Ren-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jia-Ni Tian
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC; Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Hsin-Wei Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Jyh-Haur Chern
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli, 35053, Taiwan, ROC.
| |
Collapse
|
16
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
17
|
Li PC, Jang J, Hsia CY, Groomes PV, Lian W, de Wispelaere M, Pitts JD, Wang J, Kwiatkowski N, Gray NS, Yang PL. Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy in Vivo. ACS Infect Dis 2019; 5:460-472. [PMID: 30608640 DOI: 10.1021/acsinfecdis.8b00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccines and antivirals to combat dengue, Zika, and other flavivirus pathogens present a major, unmet medical need. Vaccine development has been severely challenged by the antigenic diversity of these viruses and the propensity of non-neutralizing, cross-reactive antibodies to facilitate cellular infection and increase disease severity. As an alternative, direct-acting antivirals targeting the flavivirus envelope protein, E, have the potential to act via an analogous mode of action without the risk of antibody-dependent enhancement of infection and disease. We previously discovered that structurally diverse small molecule inhibitors of the dengue virus E protein exhibit varying levels of antiviral activity against other flaviviruses in cell culture. Here, we demonstrate that the broad-spectrum activity of several cyanohydrazones against dengue, Zika, and Japanese encephalitis viruses is due to specific inhibition of E-mediated membrane fusion during viral entry and provide proof of concept for pharmacological inhibition of E as an antiviral strategy in vivo.
Collapse
Affiliation(s)
- Pi-Chun Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Jaebong Jang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Chih-Yun Hsia
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrice V. Groomes
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Wenlong Lian
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Melissanne de Wispelaere
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jared D. Pitts
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, Massachusetts 02215, United States
| | - Priscilla L. Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res 2019; 164:147-153. [PMID: 30771406 DOI: 10.1016/j.antiviral.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
The recent emergence of Zika virus, a mosquito-borne flavivirus, in the Americas has shed light on the severe neurological diseases associated with infection, notably congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Despite the recent focus on Zika virus, there are currently no approved vaccines or antiviral therapies available to treat or prevent infection. In this study we established a competitive amplified luminescent proximity homogeneous assay (ALPHAscreen) to identify small molecule inhibitors targeting the envelope protein of Zika virus (Zika E). We utilized this assay to screen two libraries of nearly 27,000 compounds and identified seven novel inhibitors of Zika E. Characterization of these primary screening leads demonstrated that inhibition of Zika virus occurs at non-cytotoxic concentrations for all seven lead compounds. In addition, we found that all seven lead compounds have potent activity against the closely related dengue virus 2 but not vesicular stomatitis virus, an unrelated enveloped virus. Biochemical experiments indicate that these compounds act by preventing E-mediated membrane fusion. This work highlights a new method for the discovery and optimization of direct-acting antivirals targeting the E protein of Zika and other flaviviruses.
Collapse
|
19
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|