1
|
Mellor DA, Suo Y, Miyada MG, Medina Perez GA, Burkart MD. Manipulation and Structural Activity of AcpM in Mycobacterium tuberculosis. Biochemistry 2025; 64:351-356. [PMID: 39740789 DOI: 10.1021/acs.biochem.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state. Herein, we report a streamlined method to generate homogeneous samples of modified AcpM for applications in structure and functional studies. We apply these to generate solvatochromic labeled crypto-AcpM, where fluorescence response reports cargo sequestration and chain flipping upon interaction with four FAS-II enzymes. We find an increased fluorescence in a truncated form, AcpM80, indicating that the 35-residue C-terminus is involved in modulating the chemical environment surrounding the substrate and contributing to the regulation of PPIs. This study establishes an efficient chemo-enzymatic strategy to generate AcpM analogs for biophysical studies to aid in understanding the processes driving Mtb pathogenicity and drug resistance.
Collapse
Affiliation(s)
- Desirae A Mellor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yixing Suo
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Grace A Medina Perez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
2
|
Miyada MG, Choi Y, Rich K, La Clair JJ, Burkart MD. Differentiating carrier protein interactions in biosynthetic pathways using dapoxyl solvatochromism. Chem Sci 2024; 15:19913-19919. [PMID: 39568935 PMCID: PMC11575542 DOI: 10.1039/d4sc05499g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Carrier protein-dependent synthases are ubiquitous enzymes involved both in primary and secondary metabolism. Biocatalysis within these synthases is governed by key interactions between the carrier protein, substrate, and partner enzymes. The weak and transient nature of these interactions has rendered them difficult to study. Here we develop a useful fluorescent solvatochromic probe, dapoxyl-pantetheinamide, to monitor and quantify carrier protein interactions in vitro. Upon loading with target carrier proteins, we observe dramatic shifts in fluorescence emission wavelength and intensity and further demonstrate that this tool has the potential to be applied across numerous biosynthetic pathways. The environmental sensitivity of this probe allows rapid characterization of carrier protein interactions, with the ability to quantitatively determine inhibition of protein-protein interactions. We anticipate future application of these probes for inhibitor screening and in vivo characterization.
Collapse
Affiliation(s)
- Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Kyle Rich
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| |
Collapse
|
3
|
Miyada MG, Choi Y, Stepanauskas R, Woyke T, La Clair JJ, Burkart MD. Fluorometric Analysis of Carrier-Protein-Dependent Biosynthesis through a Conformationally Sensitive Solvatochromic Pantetheinamide Probe. ACS Chem Biol 2024; 19:1416-1425. [PMID: 38909314 PMCID: PMC11622929 DOI: 10.1021/acschembio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.
Collapse
Affiliation(s)
- Matthew G. Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
4
|
Suo Y, Chen A, La Clair JJ, Burkart MD. Substrate Sequestration and Chain Flipping in Human Mitochondrial Acyl Carrier Protein. Biochemistry 2023; 62:3548-3553. [PMID: 38039071 DOI: 10.1021/acs.biochem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Outside of their involvement in energy production, mitochondria play a critical role for the cell through their access to a discrete pathway for fatty acid biosynthesis. Despite decades of study in bacterial fatty acid synthases (the putative evolutionary mitochondrial precursor), our understanding of human mitochondrial fatty acid biosynthesis remains incomplete. In particular, the role of the key carrier protein, human mitochondrial acyl carrier protein (mACP), which shuttles the substrate intermediates through the pathway, has not been well-studied in part due to challenges in protein expression and purification. Herein, we report a reliable method for recombinant Escherichia coli expression and purification of mACP. Fundamental characteristics, including substrate sequestration and chain-flipping activity, are demonstrated in mACP using solvatochromic response. This study provides an efficient approach toward understanding the fundamental protein-protein interactions of mACP and its partner proteins, ultimately leading to a molecular understanding of human mitochondrial diseases such as mitochondrial fatty acid oxidation deficiencies.
Collapse
Affiliation(s)
- Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
5
|
Santos TG, Silva KS, Lima RM, Silva LC, Pereira M. State of the art in protein-protein interactions within the fungi kingdom. Future Microbiol 2023; 18:1119-1131. [PMID: 37540069 DOI: 10.2217/fmb-2022-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Proteins rarely exert their function by themselves. Protein-protein interactions (PPIs) regulate virtually every biological process that takes place in a cell. Such interactions are targets for new therapeutic agents against all sorts of diseases, through the screening and design of a variety of inhibitors. Here we discuss several aspects of PPIs that contribute to prediction of protein function and drug discovery. As the high-throughput techniques continue to release biological data, targets for fungal therapeutics that rely on PPIs are being proposed worldwide. Computational approaches have reduced the time taken to develop new therapeutic approaches. The near future brings the possibility of developing new PPI and interaction network inhibitors and a revolution in the way we treat fungal diseases.
Collapse
Affiliation(s)
- Thaynara G Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Kleber Sf Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Raisa M Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Lívia C Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| |
Collapse
|
6
|
Jiang Z, Chen A, Chen J, Sekhon A, Louie GV, Noel JP, La Clair JJ, Burkart MD. Masked cerulenin enables a dual-site selective protein crosslink. Chem Sci 2023; 14:10925-10933. [PMID: 37829009 PMCID: PMC10566503 DOI: 10.1039/d3sc02864j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023] Open
Abstract
Protein-reactive natural products such as the fungal metabolite cerulenin are recognized for their value as therapeutic candidates, due to their ability to selectively react with catalytic residues within a protein active site or a complex of protein domains. Here, we explore the development of fatty-acid and polyketide-synthase probes by synthetically modulating cerulenin's functional moieties. Using a mechanism-based approach, we reveal unique reactivity within cerulenin and adapt it for fluorescent labeling and crosslinking of fatty-acid and iterative type-I polyketide synthases. We also describe two new classes of silylcyanohydrin and silylhemiaminal masked crosslinking probes that serve as new tools for activity and structure studies of these biosynthetic pathways.
Collapse
Affiliation(s)
- Ziran Jiang
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Jeffrey Chen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Arman Sekhon
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Gordon V Louie
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics La Jolla CA 92037 USA
| | - Joseph P Noel
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics La Jolla CA 92037 USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093-0358 USA
| |
Collapse
|
7
|
Mellor DA, Sanlley JO, Burkart M. Using NMR Titration Experiments to Study E. coli FAS-II- and AcpP-Mediated Protein-Protein Interactions. Methods Mol Biol 2023; 2670:49-68. [PMID: 37184699 DOI: 10.1007/978-1-0716-3214-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Acyl carrier proteins (ACPs) are central to many primary and secondary metabolic pathways. In E. coli fatty acid biosynthesis (FAB), the central ACP, AcpP, transports intermediates to a suite of partner proteins (PP) for iterative modification and elongation. The regulatory protein-protein interactions that occur between AcpP and the PP in FAB are poorly understood due to the dynamic and transient nature of these interactions. Solution-state NMR spectroscopy can reveal information at the atomic level through experiments such as the 2D heteronuclear single quantum coherence (HSQC). The following protocol describes NMR HSQC titration experiments that can elucidate biomolecular recognition events.
Collapse
Affiliation(s)
- Desirae A Mellor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Javier O Sanlley
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Michael Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Chen A, Jiang Z, Burkart MD. Enzymology of standalone elongating ketosynthases. Chem Sci 2022; 13:4225-4238. [PMID: 35509474 PMCID: PMC9006962 DOI: 10.1039/d1sc07256k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon-carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS-ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
9
|
Prince JP, Bolla JR, Fisher GLM, Mäkelä J, Fournier M, Robinson CV, Arciszewska LK, Sherratt DJ. Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nat Commun 2021; 12:6721. [PMID: 34795302 PMCID: PMC8602292 DOI: 10.1038/s41467-021-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Collapse
Affiliation(s)
- Josh P. Prince
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: Meiosis Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jani R. Bolla
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Gemma L. M. Fisher
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: DNA Motors Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jarno Mäkelä
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.168010.e0000000419368956Present Address: ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305 USA
| | - Marjorie Fournier
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK
| | - Lidia K. Arciszewska
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Sherratt
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
10
|
Singh BK, Biswas R, Basak A, Das AK. Mycobacterial crypto-AcpM as a tool to investigate the consequence of drug binding on its key FAS II partner enzyme HadAB. Biochim Biophys Acta Gen Subj 2021; 1865:129964. [PMID: 34252514 DOI: 10.1016/j.bbagen.2021.129964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Background Mycobacterial FASII pathway is governed by the Protein-Protein Interaction mediated dynamics existent between Acyl Carrier Protein and its partner enzymes. The dehydratase HadAB, involved in the third step of FASII synthesis has remained a key target of drugs like Thiacetazone (TAC) and its consequence on AcpM binding is yet to be deciphered. Owing to the transient nature of these interactions, analysing their implications as a drug target has been exhausting. Methods In this context, we have developed an in vitro method to study the effect of thiocarbamide-containing compounds, TAC and SPA0355 (a thiourea analogue) against mycobacterial HadAB. Additionally, by utilizing crypto-ACP (NBD-tagged Acyl Carrier Protein) as a tool of our choice, we attempted at exploring the effect of TAC and SPA0355 on mycobacterial HadAB. Results SPA0355 behaves at par with TAC and undergoes activation in the presence of monooxygenase EthA thus, bringing about a covalent modification in HadA subunit of HadAB. The crypto-ACP method provides insights into the altered substrate housing capability in HadAB associated with the impediment of its AcpM mediated functionality; an outcome attributed to the repercussions associated with the binding of the aforementioned thiourea compounds. Conclusion This investigation has assisted in unveiling a two-step mechanism undertaken by AcpM for interacting with its corresponding partner protein during acyl chain transfer. General significance This study highlights the alterations brought about by drug binding in the interplay between ACP and HadAB. Additionally, this work for the first time establishes the role of SPA0355 as a promising drug candidate against dehydratase HadAB.
Collapse
Affiliation(s)
- Bina K Singh
- School of Biosciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- School of Biosciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit K Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
11
|
Kim WE, Charov K, Džunková M, Becraft ED, Brown J, Schulz F, Woyke T, La Clair JJ, Stepanauskas R, Burkart MD. Synthase-Selective Exploration of a Tunicate Microbiome by Activity-Guided Single-Cell Genomics. ACS Chem Biol 2021; 16:813-819. [PMID: 33955744 PMCID: PMC9884146 DOI: 10.1021/acschembio.1c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While thousands of environmental metagenomes have been mined for the presence of novel biosynthetic gene clusters, such computational predictions do not provide evidence of their in vivo biosynthetic functionality. Using fluorescent in situ enzyme assay targeting carrier proteins common to polyketide (PKS) and nonribosomal peptide synthetases (NRPS), we applied fluorescence-activated cell sorting to tunicate microbiome to enrich for microbes with active secondary metabolic capabilities. Single-cell genomics uncovered the genetic basis for a wide biosynthetic diversity in the enzyme-active cells and revealed a member of marine Oceanospirillales harboring a novel NRPS gene cluster with high similarity to phylogenetically distant marine and terrestrial bacteria. Interestingly, this synthase belongs to a larger class of siderophore biosynthetic gene clusters commonly associated with pestilence and disease. This demonstrates activity-guided single-cell genomics as a tool to guide novel biosynthetic discovery.
Collapse
Affiliation(s)
- Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Mária Džunková
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Eric D. Becraft
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States,University of North Alabama, Florence AL 35632, United States
| | - Julia Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Mail Stop: 91R183, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME 04544, United States,Corresponding authors: (M.D.B) and (R.S.)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093–0358, United States,Corresponding authors: (M.D.B) and (R.S.)
| |
Collapse
|
12
|
Charov K, Burkart MD. In silico identification and in vitro evaluation of a protein-protein interaction inhibitor of Escherichia coli fatty acid biosynthesis. Chem Biol Drug Des 2021; 98:94-101. [PMID: 33905605 DOI: 10.1111/cbdd.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 11/29/2022]
Abstract
To combat the rise in antibiotic resistance, new targets must be identified and probes against them developed. Protein-protein interactions (PPI) of bacterial type II fatty acid biosynthesis (FAS-II) represent an untapped, yet rich area for new antibiotic discovery. Here, we present a computational and in vitro workflow for the discovery of new inhibitors of PPI in Escherichia coli FAS-II. As part of this study, we identified suramin, an existing treatment for African sleeping sickness, to effectively block the interaction of E. coli dehydratase FabA and the acyl carrier protein EcACP, with an IC50 = 85 μΜ. This finding validates a workflow that combines in silico screening with in vitro PPI assays to identify probes appropriate for further optimization.
Collapse
Affiliation(s)
- Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Bartholow TG, Sztain T, Patel A, Lee DJ, Young MA, Abagyan R, Burkart MD. Elucidation of transient protein-protein interactions within carrier protein-dependent biosynthesis. Commun Biol 2021; 4:340. [PMID: 33727677 PMCID: PMC7966745 DOI: 10.1038/s42003-021-01838-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This technique describes and compares the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways.
Collapse
Affiliation(s)
- Thomas G Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Terra Sztain
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan A Young
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Charov K, Burkart MD. Quantifying protein-protein interactions of the acyl carrier protein with solvatochromic probes. Methods Enzymol 2020; 638:321-340. [PMID: 32416920 DOI: 10.1016/bs.mie.2020.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Protein-protein interactions (PPIs) are universal to life and their study and understanding is critical to drug discovery and bioengineering efforts. Historically, X-ray crystallography, isothermal titration calorimetry and other biophysical methods have been used to study PPIs, but can be costly and are low throughput, hindering progress towards rapid evaluation of these interactions. Recent interest in targeting PPIs and in engineering biosynthetic pathways in which PPIs play a critical role has driven innovation in their evaluation but a universal screen is still needed. One of the best characterized systems relying upon PPIs is Escherichia coli type II fatty acid biosynthesis in which the central acyl carrier protein (EcACP) shuttles substrates to a series of partner enzymes. Here we present a method by which EcACP is labeled with a solvatochromic dye, 4-DMN, and then allowed to interact with its various partner enzymes. Upon interaction, there is a large increase in fluorescence intensity which is easily monitored via fluorometer or plate reader. This method is useful in the study of known PPI, hypothetical PPI and in evaluation of inhibitors of both partner enzyme active site and of the PPI itself.
Collapse
Affiliation(s)
- Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|