1
|
Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. J Med Chem 2022; 65:13910-13934. [PMID: 36219779 PMCID: PMC9826610 DOI: 10.1021/acs.jmedchem.2c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone 111 with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.06 μg/mL against numerous clinical isolates. Preliminary mechanism of action and resistance studies demonstrate that the 5-amino-4-quinolones are bacteriostatic, do not select for resistance, and selectively disrupt bacterial membranes. While the precise molecular mechanism has not been elucidated, the lead compound is nontoxic displaying a therapeutic index greater than 500, is devoid of hemolytic activity, and has attractive physicochemical properties (clog P = 3.8, molecular weight (MW) = 441) that warrant further investigation of this promising antibacterial scaffold for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- John R Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen K Costa
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Gorakhnath R Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Michaele Josten
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Chinedu Ejeh
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Travis Hammerstad
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hans Georg Sahl
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Pedro M Pereira
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Hammond K, Moffat J, Mulcahy C, Hoogenboom BW, Ryadnov MG. In situ nanoscale imaging reveals self-concentrating nanomolar antimicrobial pores. NANOSCALE 2022; 14:8586-8593. [PMID: 35574721 DOI: 10.1039/d2nr00434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Host defence peptides are critical factors of immune systems in all life forms. Considered for therapeutic development in the post-antibiotic era, these molecules rupture microbial membranes at micromolar concentrations. Here we report a self-concentrating mechanism of membrane disruption, which occurs at therapeutically more relevant nanomolar concentrations. Induced by a four-helix bacteriocin the mechanism manifests in a multi-modal disruption pattern. Using in situ atomic force microscopy we show that the pattern and its kinetic profiles remain the same in a range of nano-to-micromolar concentrations. We reveal that the bacteriocin creates its own boundaries in phospholipid bilayers in which it self-concentrates to promote transmembrane poration. The findings offer an exploitable insight into nanomolar antimicrobial mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | - Jonathan Moffat
- Oxford Instruments Asylum Research, Halifax Road, High Wycombe, HP12 3SE, UK
| | - Chris Mulcahy
- Oxford Instruments Asylum Research, Halifax Road, High Wycombe, HP12 3SE, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
- Department of Physics, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
3
|
Zhong R, Li H, Li H, Fang S, Liu J, Chen Y, Liu S, Lin S. Development of Amphiphilic Coumarin Derivatives as Membrane-Active Antimicrobial Agents with Potent In Vivo Efficacy against Gram-Positive Pathogenic Bacteria. ACS Infect Dis 2021; 7:2864-2875. [PMID: 34505771 DOI: 10.1021/acsinfecdis.1c00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increases in drug-resistant pathogens are becoming a serious detriment to human health. To combat pathogen infections, a new series of amphiphilic coumarin derivatives were designed and synthesized as antimicrobial agents with membrane-targeting action. We herein report a lead compound, 25, that displayed potent antibacterial activity against Gram-positive bacteria, including MRSA. Compound 25 exhibited weak hemolytic activity and low toxicity to mammalian cells and can kill Gram-positive bacteria quickly (within 0.5 h) by directly disrupting the bacterial cell membranes. Additionally, compound 25 demonstrated excellent efficacy in a murine corneal infection caused by Staphylococcus aureus. These results suggest that 25 has great potential to be a potent antimicrobial agent for treating drug-resistant Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
4
|
Hammond K, Cipcigan F, Al Nahas K, Losasso V, Lewis H, Cama J, Martelli F, Simcock PW, Fletcher M, Ravi J, Stansfeld PJ, Pagliara S, Hoogenboom BW, Keyser UF, Sansom MSP, Crain J, Ryadnov MG. Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation. ACS NANO 2021; 15:9679-9689. [PMID: 33885289 PMCID: PMC8219408 DOI: 10.1021/acsnano.1c00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Disruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8-11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | | | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Helen Lewis
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jehangir Cama
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- College of Engineering, Mathematics and Phys Sciences, University of Exeter, Exeter EX4 4QF, UK
| | | | - Patrick W Simcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
- Corresponding author: Prof Maxim G Ryadnov; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK, Tel: (+44) 20 89436078;
| |
Collapse
|
5
|
Simcock PW, Bublitz M, Cipcigan F, Ryadnov MG, Crain J, Stansfeld PJ, Sansom MSP. Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification. J Chem Theory Comput 2021; 17:1218-1228. [PMID: 33395285 DOI: 10.1021/acs.jctc.0c01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification.
Collapse
Affiliation(s)
- Patrick W Simcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | | | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Jason Crain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- IBM Research UK, Hartree Centre, Daresbury WA4 4AD, U.K
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
6
|
Abstract
Electron microscopy offers necessary precision for the characterization of peptide materials at the nanoscale. Analysis is typically performed for acellular material specimens, whereas measurements in more complex, cellular environments prompt additional considerations for sample processing. Herein, we describe a protocol for the ultramicrotomy analysis of peptide-treated bacterial and mammalian cells. An emphasis is made on cell analysis following peptide treatment, as opposed to peptide analysis in cells, and focuses on sample processing, including fixation and staining procedures, resin embedding, sectioning, and imaging. The application of the protocol is demonstrated for intracellular measurements using antimicrobial peptide materials.
Collapse
Affiliation(s)
- Stephanie Rey
- National Physical Laboratory, Teddington, Middlesex, UK
| | | | | |
Collapse
|
7
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Flowering Poration-A Synergistic Multi-Mode Antibacterial Mechanism by a Bacteriocin Fold. iScience 2020; 23:101423. [PMID: 32795916 PMCID: PMC7424198 DOI: 10.1016/j.isci.2020.101423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Bacteriocins are a distinct family of antimicrobial proteins postulated to porate bacterial membranes. However, direct experimental evidence of pore formation by these proteins is lacking. Here we report a multi-mode poration mechanism induced by four-helix bacteriocins, epidermicin NI01 and aureocin A53. Using a combination of crystallography, spectroscopy, bioassays, and nanoscale imaging, we established that individual two-helix segments of epidermicin retain antibacterial activity but each of these segments adopts a particular poration mode. In the intact protein these segments act synergistically to balance out antibacterial and hemolytic activities. The study sets a precedent of multi-mode membrane disruption advancing the current understanding of structure-activity relationships in pore-forming proteins. Bacteriocins are antibacterial proteins believed to form pores in bacterial membranes A multi-helix bacteriocin fold induces a multi-mode poration mechanism Each of two-helix segments of the bacteriocin adopts a particular poration mode These segments act synergistically balancing out antibacterial and hemolytic activities
Collapse
|