1
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Thathy V, Hackett F, Yeo T, Li VL, Muir R, Faucher F, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets. Cell Chem Biol 2024; 31:1714-1728.e10. [PMID: 39137783 PMCID: PMC11457795 DOI: 10.1016/j.chembiol.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA; Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Di Maio A, Olleik H, Courvoisier-Dezord E, Guillier S, Neulat-Ripoll F, Haudecoeur R, Bolla JM, Casanova M, Cavalier JF, Canaan S, Pique V, Charmasson Y, Baydoun E, Hijazi A, Perrier J, Maresca M, Robin M. Design and Synthesis of Novel Amino and Acetamidoaurones with Antimicrobial Activities. Antibiotics (Basel) 2024; 13:300. [PMID: 38666976 PMCID: PMC11047580 DOI: 10.3390/antibiotics13040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
The development of new and effective antimicrobial compounds is urgent due to the emergence of resistant bacteria. Natural plant flavonoids are known to be effective molecules, but their activity and selectivity have to be increased. Based on previous aurone potency, we designed new aurone derivatives bearing acetamido and amino groups at the position 5 of the A ring and managing various monosubstitutions at the B ring. A series of 31 new aurone derivatives were first evaluated for their antimicrobial activity with five derivatives being the most active (compounds 10, 12, 15, 16, and 20). The evaluation of their cytotoxicity on human cells and of their therapeutic index (TI) showed that compounds 10 and 20 had the highest TI. Finally, screening against a large panel of pathogens confirmed that compounds 10 and 20 possess large spectrum antimicrobial activity, including on bioweapon BSL3 strains, with MIC values as low as 0.78 µM. These results demonstrate that 5-acetamidoaurones are far more active and safer compared with 5-aminoaurones, and that benzyloxy and isopropyl substitutions at the B ring are the most promising strategy in the exploration of new antimicrobial aurones.
Collapse
Affiliation(s)
- Attilio Di Maio
- Aix Marseille University, University Avignon, CNRS, IRD, IMBE, 13013 Marseille, France; (A.D.M.); (V.P.)
| | - Hamza Olleik
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Elise Courvoisier-Dezord
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Sophie Guillier
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France; (S.G.); (F.N.-R.); (J.-M.B.)
| | - Fabienne Neulat-Ripoll
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France; (S.G.); (F.N.-R.); (J.-M.B.)
| | | | - Jean-Michel Bolla
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France; (S.G.); (F.N.-R.); (J.-M.B.)
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM UMR7255, IMM FR3479, 13009 Marseille, France; (M.C.); (J.-F.C.); (S.C.)
| | - Jean-François Cavalier
- Aix-Marseille University, CNRS, LISM UMR7255, IMM FR3479, 13009 Marseille, France; (M.C.); (J.-F.C.); (S.C.)
| | - Stéphane Canaan
- Aix-Marseille University, CNRS, LISM UMR7255, IMM FR3479, 13009 Marseille, France; (M.C.); (J.-F.C.); (S.C.)
| | - Valérie Pique
- Aix Marseille University, University Avignon, CNRS, IRD, IMBE, 13013 Marseille, France; (A.D.M.); (V.P.)
| | - Yolande Charmasson
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107, Lebanon;
| | - Akram Hijazi
- Plateforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut 1107, Lebanon;
| | - Josette Perrier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Maxime Robin
- Aix Marseille University, University Avignon, CNRS, IRD, IMBE, 13013 Marseille, France; (A.D.M.); (V.P.)
| |
Collapse
|
3
|
Casanova M, Maresca M, Poncin I, Point V, Olleik H, Boidin-Wichlacz C, Tasiemski A, Mabrouk K, Cavalier JF, Canaan S. Promising antibacterial efficacy of arenicin peptides against the emerging opportunistic pathogen Mycobacterium abscessus. J Biomed Sci 2024; 31:18. [PMID: 38287360 PMCID: PMC10823733 DOI: 10.1186/s12929-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.
Collapse
Affiliation(s)
- Magali Casanova
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France.
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - Isabelle Poncin
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| | - Vanessa Point
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| | - Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 (UMR7313), Marseille, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Kamel Mabrouk
- Aix-Marseille Univ, CNRS, UMR7273, ICR, 13013, Marseille, France
| | | | - Stéphane Canaan
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
| |
Collapse
|
4
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Hackett F, Yeo T, Li VL, Muir RK, Faucher FF, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed Alkyl/Aryl Phosphonates Identify Metabolic Serine Hydrolases as Antimalarial Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575224. [PMID: 38260474 PMCID: PMC10802587 DOI: 10.1101/2024.01.11.575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan K Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
- Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032 USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Han L, Chang PV. Activity-based protein profiling in microbes and the gut microbiome. Curr Opin Chem Biol 2023; 76:102351. [PMID: 37429085 PMCID: PMC10527501 DOI: 10.1016/j.cbpa.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023]
Abstract
Activity-based protein profiling (ABPP) is a powerful chemical approach for probing protein function and enzymatic activity in complex biological systems. This strategy typically utilizes activity-based probes that are designed to bind a specific protein, amino acid residue, or protein family and form a covalent bond through a reactivity-based warhead. Subsequent analysis by mass spectrometry-based proteomic platforms that involve either click chemistry or affinity-based labeling to enrich for the tagged proteins enables identification of protein function and enzymatic activity. ABPP has facilitated elucidation of biological processes in bacteria, discovery of new antibiotics, and characterization of host-microbe interactions within physiological contexts. This review will focus on recent advances and applications of ABPP in bacteria and complex microbial communities.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Pamela V Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Illouz M, Leclercq LD, Dessenne C, Hatfull G, Daher W, Kremer L, Guérardel Y. Multiple Mycobacterium abscessus O-acetyltransferases influence glycopeptidolipid structure and colony morphotype. J Biol Chem 2023; 299:104979. [PMID: 37390990 PMCID: PMC10400925 DOI: 10.1016/j.jbc.2023.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Mycobacterium abscessus causes severe lung infections. Clinical isolates can have either smooth (S) or rough (R) colony morphotypes; of these, S but not R variants have abundant cell wall glycopeptidolipids (GPL) consisting of a peptidolipid core substituted by a 6-deoxy-α-L-talose (6-dTal) and rhamnose residues. Deletion of gtf1, encoding the 6-dTal transferase, results in the S-to-R transition, mycobacterial cord formation, and increased virulence, underscoring the importance of 6-dTal in infection outcomes. However, since 6-dTal is di-O-acetylated, it is unclear whether the gtf1 mutant phenotypes are related to the loss of the 6-dTal or the result of the absence of acetylation. Here, we addressed whether M. abscessus atf1 and atf2, encoding two putative O-acetyltransferases located within the gpl biosynthetic locus, transfer acetyl groups to 6-dTal. We found deletion of atf1 and/or atf2 did not drastically alter the GPL acetylation profile, suggesting there are additional enzymes with redundant functions. We subsequently identified two paralogs of atf1 and atf2, MAB_1725c and MAB_3448. While deletion of MAB_1725c and MAB_3448 had no effect on GPL acetylation, the triple atf1-atf2-MAB_1725c mutant did not synthetize fully acetylated GPL, and the quadruple mutant was totally devoid of acetylated GPL. Moreover, both triple and quadruple mutants accumulated hyper-methylated GPL. Finally, we show deletion of atf genes resulted in subtle changes in colony morphology but had no effect on M. abscessus internalization by macrophages. Overall, these findings reveal the existence of functionally redundant O-acetyltransferases and suggest that O-acetylation influences the glycan moiety of GPL by deflecting biosynthetic flux in M. abscessus.
Collapse
Affiliation(s)
- Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Louis-David Leclercq
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Clara Dessenne
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France
| | - Graham Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| | - Yann Guérardel
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Université de Lille, Lille, France; Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
7
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
8
|
Barelier S, Avellan R, Gnawali GR, Fourquet P, Roig-Zamboni V, Poncin I, Point V, Bourne Y, Audebert S, Camoin L, Spilling CD, Canaan S, Cavalier JF, Sulzenbacher G. Direct capture, inhibition and crystal structure of HsaD (Rv3569c) from M. tuberculosis. FEBS J 2023; 290:1563-1582. [PMID: 36197115 DOI: 10.1111/febs.16645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
A hallmark of Mycobacterium tuberculosis (M. tb), the aetiologic agent of tuberculosis, is its ability to metabolise host-derived lipids. However, the enzymes and mechanisms underlying such metabolism are still largely unknown. We previously reported that the Cyclophostin & Cyclipostins (CyC) analogues, a new family of potent antimycobacterial molecules, react specifically and covalently with (Ser/Cys)-based enzymes mostly involved in bacterial lipid metabolism. Here, we report the synthesis of new CyC alkyne-containing inhibitors (CyCyne ) and their use for the direct fishing of target proteins in M. tb culture via bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP). This approach led to the capture and identification of a variety of enzymes, and many of them involved in lipid or steroid metabolisms. One of the captured enzymes, HsaD (Rv3569c), is required for the survival of M. tb within macrophages and is thus a potential therapeutic target. This prompted us to further explore and validate, through a combination of biochemical and structural approaches, the specificity of HsaD inhibition by the CyC analogues. We confirmed that the CyC bind covalently to the catalytic Ser114 residue, leading to a total loss of enzyme activity. These data were supported by the X-ray structures of four HsaD-CyC complexes, obtained at resolutions between 1.6 and 2.6 Å. The identification of mycobacterial enzymes directly captured by the CyCyne probes through CC-ABPP paves the way to better understand and potentially target key players at crucial stages of the bacilli life cycle.
Collapse
Affiliation(s)
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Giri Raj Gnawali
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, MO, USA
| | - Patrick Fourquet
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | - Vanessa Point
- CNRS, LISM, IMM FR3479, Aix-Marseille University, France
| | - Yves Bourne
- CNRS, AFMB, Aix-Marseille University, France
| | - Stéphane Audebert
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | - Luc Camoin
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Aix-Marseille University, France
| | | | | | | | | |
Collapse
|
9
|
Sarrazin M, Martin BP, Avellan R, Gnawali GR, Poncin I, Le Guenno H, Spilling CD, Cavalier JF, Canaan S. Synthesis and Biological Characterization of Fluorescent Cyclipostins and Cyclophostin Analogues: New Insights for the Diagnosis of Mycobacterial-Related Diseases. ACS Infect Dis 2022; 8:2564-2578. [PMID: 36379042 DOI: 10.1021/acsinfecdis.2c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with cystic fibrosis (CF) have a significantly higher risk of acquiring nontuberculous mycobacteria infections, predominantly due to Mycobacterium abscessus, than the healthy population. Because M. abscessus infections are a major cause of clinical decline and morbidity in CF patients, improving treatment and the detection of this mycobacterium in the context of a polymicrobial culture represents a critical component to better manage patient care. We report here the synthesis of fluorescent Dansyl derivatives of four active cyclipostins and cyclophostin analogues (CyCs) and provide new insights regarding the CyC's lack of activity against Gram-negative and Gram-positive bacteria, and above all into their mode of action against intramacrophagic M. abscessus cells. Our results pointed out that the intracellularly active CyC accumulate in acidic compartments within macrophage cells, that this accumulation appears to be essential for their delivery to mycobacteria-containing phagosomes, and consequently, for their antimicrobial effect against intracellular replicating M. abscessus, and that modification of such intracellular localization via disruption of endolysosomal pH strongly affects the CyC accumulation and efficacy. Moreover, we discovered that these fluorescent compounds could become efficient probes to specifically label mycobacterial species with high sensitivity, including M. abscessus in the presence several other pathogens like Pseudomonas aeruginosa and Staphylococcus aureus. Collectively, all present and previous data emphasized the therapeutic potential of unlabeled CyCs and the attractiveness of the fluorescent CyC as a potential new efficient diagnostic tool to be exploited in future diagnostic developments against mycobacterial-related infections, especially against M. abscessus.
Collapse
Affiliation(s)
- Morgane Sarrazin
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Benjamin P Martin
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Giri Raj Gnawali
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Isabelle Poncin
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Hugo Le Guenno
- Microscopy Core Facility, IMM FR3479, CNRS, Aix-Marseille Univ, Marseille 13009, France
| | - Christopher D Spilling
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | | | - Stéphane Canaan
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| |
Collapse
|
10
|
Alcaraz M, Roquet-Banères F, Leon-Icaza SA, Abendroth J, Boudehen YM, Cougoule C, Edwards TE, Kremer L. Efficacy and Mode of Action of a Direct Inhibitor of Mycobacterium abscessus InhA. ACS Infect Dis 2022; 8:2171-2186. [PMID: 36107992 DOI: 10.1021/acsinfecdis.2c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is an unmet medical need for effective treatments against Mycobacterium abscessus pulmonary infections, to which cystic fibrosis (CF) patients are particularly vulnerable. Recent studies showed that the antitubercular drug isoniazid is inactive against M. abscessus due to the incapacity of the catalase-peroxidase to convert the pro-drug into a reactive metabolite that inhibits the enoyl-ACP reductase InhA. To validate InhAMAB as a druggable target in M. abscessus, we assayed the activity of NITD-916, a 4-hydroxy-2-pyridone lead candidate initially described as a direct inhibitor of InhA that bypasses KatG bioactivation in Mycobacterium tuberculosis. The compound displayed low MIC values against rough and smooth clinical isolates in vitro and significantly reduced the bacterial burden inside human macrophages. Moreover, treatment with NITD-916 reduced the number and size of intracellular mycobacterial cords, regarded as markers of the severity of the infection. Importantly, NITD-916 significantly lowered the M. abscessus burden in CF-derived lung airway organoids. From a mechanistic perspective, NITD-916 abrogated de novo synthesis of mycolic acids and NITD-916-resistant spontaneous mutants harbored point mutations in InhAMAB at residue 96. That NITD-916 targets InhAMAB directly without activation requirements was confirmed genetically and by resolving the crystal structure of the protein in complex with NADH and NITD-916. These findings collectively indicate that InhAMAB is an attractive target to be exploited for future chemotherapeutic developments against this difficult-to-treat mycobacterium and highlight the potential of NITD-916 derivatives for further evaluation in preclinical settings.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington 98109, United States.,Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, Washington 98109, United States.,Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France.,INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
11
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Mass spectrometry-guided discovery of new analogues of bicyclic phosphotriester salinipostin and evaluation of their monoacylglycerol lipase inhibitory activity. Biosci Biotechnol Biochem 2022; 86:1333-1342. [PMID: 35918181 DOI: 10.1093/bbb/zbac131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Natural products containing the highly unusual phosphotriester ring are known to be potent serine hydrolase inhibitors. The long-chain bicyclic enol-phosphotriester salinipostins (SPTs) from the marine actinomycete Salinispora have been identified as selective antimalarial agents. A potential regulatory function has been suggested for phosphotriesters based on their structural relationship with actinomycete signaling molecules and the prevalence of spt-like biosynthetic gene clusters across actinomycetes. In this study, we established a mass spectrometry-guided screening method for phosphotriesters focusing on their characteristic fragment ions. Applying this screening method to the SPT producer Salinispora tropica CNB-440, new SPT analogues (4-6) were discovered and their structures were elucidated by spectroscopic analyses. Previously known and herein-identified SPT analogues inhibited the activity of human monoacylglycerol lipase (MAGL), a key serine hydrolase in the endocannabinoid system, in the nanomolar range. Our method could be applied to the screening of phosphotriesters, potential serine hydrolase inhibitors and signaling molecules.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan.,Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Design, synthesis and antibacterial activity against pathogenic mycobacteria of conjugated hydroxamic acids, hydrazides and O-alkyl/O-acyl protected hydroxamic derivatives. Bioorg Med Chem Lett 2022; 64:128692. [PMID: 35307568 DOI: 10.1016/j.bmcl.2022.128692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
With the aim to discover new antituberculous molecules, three novel series of 23 hydroxamic acids, 13 hydrazides, and 9O-alkyl/O-acyl protected hydroxamic acid derivatives have been synthesized, and fully characterized by spectral 1H NMR, 13C NMR, HRMS) analysis. These compounds were further biologically screened for their in vitro antibacterial activities against three pathogenic mycobacteria - M. abscessus S and R, M. marinum, and M. tuberculosis - as well as for their toxicity towards murine macrophages by the resazurin microtiter assay (REMA). Among the 45 derivatives, 17 compounds (3 hydroxamic acids, 9 hydrazides, and 5O-alkyl/O-acyl protected hydroxamic acids) were nontoxic against murine macrophages. When tested for their antibacterial activity, hydroxamic acid 9 h was found to be the most potent inhibitor against M. abscessus S and R only. Regarding hydrazide series, only 7h was active against M. abscessus R, M. marinum and M. tuberculosis; while the O-acyl protected hydroxamic acid derivatives 14d and 15d displayed promising antibacterial activity against both M. marinum and M. tuberculosis. Since such hydroxamic- and hydrazide-chelating groups have been reported to impair the activity of the peptide deformylase, in silico molecular docking studies in M. tuberculosis peptide deformylase enzyme active site were further performed with 7h in order to predict the possible interaction mode and binding energy of this molecule at the molecular level.
Collapse
|
13
|
Addison W, Frederickson M, Coyne AG, Abell C. Potential therapeutic targets from Mycobacterium abscessus ( Mab): recently reported efforts towards the discovery of novel antibacterial agents to treat Mab infections. RSC Med Chem 2022; 13:392-404. [PMID: 35647542 PMCID: PMC9020770 DOI: 10.1039/d1md00359c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium abscessus (Mab) are rapidly growing mycobacteria that cause severe and persistent infections in both skin and lung tissues. Treatment regimens involve the extended usage of complex combinations of drugs, often leading to severe adverse side effects, particularly in immunocompromised patients. Current macrolide therapies are gradually proving to be less effective, largely due to emergence of antibiotic resistance; there is therefore an increasing need for the discovery of new antibacterials that are active against Mab. This review highlights recent research centred upon a number of potential therapeutic targets from Mab (Ag85C, ClpC1, GyrB, MmpL3 and TrmD), and discusses the various approaches used to discover small molecule inhibitors, in the search for future antibiotics for the treatment of Mab infections.
Collapse
Affiliation(s)
- William Addison
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Martyn Frederickson
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Anthony G Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
14
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
15
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
16
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|
17
|
Abstract
Nontuberculous mycobacteria infections are a growing concern, and their incidence has been increasing worldwide in recent years. Current treatments are not necessarily useful because many were initially designed to work against other bacteria, such as Mycobacterium tuberculosis. In addition, inadequate treatment means that resistant strains are increasingly appearing, particularly for Mycobacterium abscessus, one of the most virulent nontuberculous mycobacteria. There is an urgent need to develop new antibiotics specifically directed against these nontuberculous mycobacteria. To help in this fight against the emergence of these pathogens, this review describes the most promising heterocyclic antibiotics under development, with particular attention paid to their structure-activity relationships.
Collapse
|
18
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
19
|
An D, Zhang W, Pan B, Zhao Y. Metal‐Free Hydrophosphoryloxylation of Ynamides: Rapid Access to Enol Phosphates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dalie An
- Liaoning Normal University 850 Huanghe Road Dalian 116029 China
| | - Weinan Zhang
- Liaoning Normal University 850 Huanghe Road Dalian 116029 China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization Weifang University of Science and Technology Shouguang 262700 China
| | - Yingying Zhao
- Liaoning Normal University 850 Huanghe Road Dalian 116029 China
| |
Collapse
|
20
|
Adewumi AT, Elrashedy A, Soremekun OS, Ajadi MB, Soliman MES. Weak spots inhibition in the Mycobacterium tuberculosis antigen 85C target for antitubercular drug design through selective irreversible covalent inhibitor-SER124. J Biomol Struct Dyn 2020; 40:2934-2954. [PMID: 33155529 DOI: 10.1080/07391102.2020.1844061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) encoded secreted antigen 85 enzymes (Ag85A/Ag85B/Ag85C) play that critical roles in the virulence, survival and drug-resistant TB of the pathogen. Ag85 proteins are potential antitubercular drug targets because they are essential in the catalytic synthesis of trehalose moieties and mycolic acid attachment to the Mtb cell wall. Recently, experimental protocols led to the discovery of a selective covalent Ag85 inhibitor, β-isomer monocyclic enolphosphorus Cycliphostin (CyC8β) compound, which targets the Ag85 serine 124 to exhibit a promising therapeutic activity. For the first time, our study unravelled the structural features among Mtb Ag85C homologs and motions and dynamics of Ag85C when the CyC8β bound covalently and in open model conformations to the protein using bioinformatics tools and integrated Molecular dynamics simulations. Comparative Ag85C sequence analysis revealed conserved regions; 70% active site, 90% Adeniyi loop L1 and 50% loop L2, which acts as a switch between open and closed conformations. The average C-α atoms RMSD (2.05 Å) and RMSF (0.9 Å) revealed instability and high induced flexibility in the CyC8β covalent-bound compared to the apo and open model systems, which displayed more stability and lower fluctuations. DSSP showed structural transitions of α-helices to bend and loops to 310-helices in the bound systems. SASA of CyC8β covalent bound showed active site hydrophobic residues exposure to huge solvent. Therefore, these findings present the potential opportunity hotspots in Ag85C protein that would aid the structure-based design of novel chemical entities capable of resulting in potent antitubercular drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed Elrashedy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mary B Ajadi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Rifabutin Is Bactericidal against Intracellular and Extracellular Forms of Mycobacterium abscessus. Antimicrob Agents Chemother 2020; 64:AAC.00363-20. [PMID: 32816730 DOI: 10.1128/aac.00363-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases. As it is intrinsically resistant to most conventional antibiotics, there is an unmet medical need for effective treatments. Repurposing of clinically validated pharmaceuticals represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. In this context, rifabutin (RFB) has been shown to be active against M. abscessus and has raised renewed interest in using rifamycins for the treatment of M. abscessus pulmonary diseases. Here, we compared the in vitro and in vivo activity of RFB against the smooth and rough variants of M. abscessus, differing in their susceptibility profiles to several drugs and physiopathologial characteristics. While the activity of RFB is greater against rough strains than in smooth strains in vitro, suggesting a role of the glycopeptidolipid layer in susceptibility to RFB, both variants were equally susceptible to RFB inside human macrophages. RFB treatment also led to a reduction in the number and size of intracellular and extracellular mycobacterial cords. Furthermore, RFB was highly effective in a zebrafish model of infection and protected the infected larvae from M. abscessus-induced killing. This was corroborated by a significant reduction in the overall bacterial burden, as well as decreased numbers of abscesses and cords, two major pathophysiological traits in infected zebrafish. This study indicates that RFB is active against M. abscessus both in vitro and in vivo, further supporting its potential usefulness as part of combination regimens targeting this difficult-to-treat mycobacterium.
Collapse
|
22
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
23
|
Daher W, Leclercq LD, Viljoen A, Karam J, Dufrêne YF, Guérardel Y, Kremer L. O-Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of Mycobacterium abscessus and Macrophage Invasion. ACS Infect Dis 2020; 6:2756-2770. [PMID: 32857488 DOI: 10.1021/acsinfecdis.0c00490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus, an emerging pathogen responsible for severe lung infections in cystic fibrosis patients, displays either smooth (S) or rough (R) morphotypes. The S-to-R transition is associated with reduced levels of glycopeptidolipid (GPL) production and is correlated with increased pathogenicity in animal and human hosts. While the structure of GPL is well established, its biosynthetic pathway is incomplete. In addition, the biological functions of the distinct structural parts of this complex lipid remain elusive. Herein, the fmt gene encoding a putative O-methyltransferase was deleted in the M. abscessus S variant. Subsequent biochemical and structural analyses demonstrated that methoxylation of the fatty acyl chain of GPL was abrogated in the Δfmt mutant, and this defect was rescued upon complementation with a functional fmt gene. In contrast, the introduction of fmt derivatives mutated at residues essential for methyltransferase activity failed to complement GPL defects, indicating that fmt encodes an O-methyltransferase. Unexpectedly, phenotypic analyses showed that Δfmt was more hydrophilic than its parental progenitor, as demonstrated by hexadecane-aqueous buffer partitioning and atomic force microscopy experiments with hydrophobic probes. Importantly, the invasion rate of THP-1 macrophages by Δfmt was reduced by 50% when compared to the wild-type strain. Together, these results indicate that Fmt O-methylates the lipid moiety of GPL and plays a substantial role in conditioning the surface hydrophobicity of M. abscessus as well as in the early steps of the interaction between the bacilli and macrophages.
Collapse
Affiliation(s)
- Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
24
|
Madani A, Mallick I, Guy A, Crauste C, Durand T, Fourquet P, Audebert S, Camoin L, Canaan S, Cavalier JF. Dissecting the antibacterial activity of oxadiazolone-core derivatives against Mycobacterium abscessus. PLoS One 2020; 15:e0238178. [PMID: 32946441 PMCID: PMC7500638 DOI: 10.1371/journal.pone.0238178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/12/2020] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium abscessus (M. abscessus), a rapidly growing mycobacterium, is an emergent opportunistic pathogen responsible for chronic bronchopulmonary infections in individuals with respiratory diseases such as cystic fibrosis. Most treatments of M. abscessus pulmonary infections are poorly effective due to the intrinsic resistance of this bacteria against a broad range of antibiotics including anti-tuberculosis agents. Consequently, the number of drugs that are efficient against M. abscessus remains limited. In this context, 19 oxadiazolone (OX) derivatives have been investigated for their antibacterial activity against both the rough (R) and smooth (S) variants of M. abscessus. Several OXs impair extracellular M. abscessus growth with moderated minimal inhibitory concentrations (MIC), or act intracellularly by inhibiting M. abscessus growth inside infected macrophages with MIC values similar to those of imipenem. Such promising results prompted us to identify the potential target enzymes of the sole extra and intracellular inhibitor of M. abscessus growth, i.e., compound iBpPPOX, via activity-based protein profiling combined with mass spectrometry. This approach led to the identification of 21 potential protein candidates being mostly involved in M. abscessus lipid metabolism and/or in cell wall biosynthesis. Among them, the Ag85C protein has been confirmed as a vulnerable target of iBpPPOX. This study clearly emphasizes the potential of the OX derivatives to inhibit the extracellular and/or intracellular growth of M. abscessus by targeting various enzymes potentially involved in many physiological processes of this most drug-resistant mycobacterial species.
Collapse
Affiliation(s)
- Abdeldjalil Madani
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
| | - Ivy Mallick
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
- IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Alexandre Guy
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Céline Crauste
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Patrick Fourquet
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
| | - Jean François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de la Méditerranée FR3479, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Cao Y, Gao Z, Li J, Bi X, Yuan L, Pei C, Guo Y, Shi E. Regioselective O/C phosphorylation of α-chloroketones: a general method for the synthesis of enol phosphates and β-ketophosphonates via Perkow/Arbuzov reaction. RSC Adv 2020; 10:29493-29497. [PMID: 35521103 PMCID: PMC9055934 DOI: 10.1039/d0ra05140c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
A regioselective O/C phosphorylation of α-chloroketones with trialkyl phosphites was performed for the first time, which employed solvent-free Perkow reaction and NaI-assisted Arbuzov reaction under mild conditions respectively. Versatile enol phosphates were prepared in good to excellent yields as well as β-ketophosphinates.
Collapse
Affiliation(s)
- Yuepeng Cao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Junchen Li
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Chengxin Pei
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Enxue Shi
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| |
Collapse
|
26
|
Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020; 18:392-407. [PMID: 32086501 DOI: 10.1038/s41579-020-0331-1] [Citation(s) in RCA: 422] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Infections caused by non-tuberculous mycobacteria (NTM) are increasing globally and are notoriously difficult to treat due to intrinsic resistance of these bacteria to many common antibiotics. NTM are diverse and ubiquitous in the environment, with only a few species causing serious and often opportunistic infections in humans, including Mycobacterium abscessus. This rapidly growing mycobacterium is one of the most commonly identified NTM species responsible for severe respiratory, skin and mucosal infections in humans. It is often regarded as one of the most antibiotic-resistant mycobacteria, leaving us with few therapeutic options. In this Review, we cover the proposed infection process of M. abscessus, its virulence factors and host interactions and highlight the commonalities and differences of M. abscessus with other NTM species. Finally, we discuss drug resistance mechanisms and future therapeutic options. Taken together, this knowledge is essential to further our understanding of this overlooked and neglected global threat.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France.,AP-HP. GHU Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier, France. .,Inserm, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| |
Collapse
|
27
|
Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T, Mok S, Gnädig NF, Zhou Y, Kurita K, Foe IT, Terrell SM, Boucher MJ, Cieplak P, Kumpornsin K, Lee MCS, Linington RG, Long JZ, Uhlemann AC, Weerapana E, Fidock DA, Bogyo M. The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites. Cell Chem Biol 2020; 27:143-157.e5. [PMID: 31978322 PMCID: PMC8027986 DOI: 10.1016/j.chembiol.2020.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/β serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher J Schulze
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yani Zhou
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Kenji Kurita
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|