1
|
Rima M, Oueslati S, Cotelon G, Creton E, Bonnin RA, Dortet L, Iorga BI, Naas T. Role of amino acid 159 in carbapenem and temocillin hydrolysis of OXA-933, a novel OXA-48 variant. Antimicrob Agents Chemother 2024; 68:e0018024. [PMID: 38526049 PMCID: PMC11064584 DOI: 10.1128/aac.00180-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the β5-β6 loop, but interacting with key residues of it.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Garance Cotelon
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Elodie Creton
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Rémy A. Bonnin
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Laurent Dortet
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Bogdan I. Iorga
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Structural and Biochemical Features of OXA-517: a Carbapenem and Expanded-Spectrum Cephalosporin Hydrolyzing OXA-48 Variant. Antimicrob Agents Chemother 2023; 67:e0109522. [PMID: 36648230 PMCID: PMC9933634 DOI: 10.1128/aac.01095-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OXA-48-producing Enterobacterales have now widely disseminated throughout the world. Several variants have now been reported, differing by just a few amino-acid substitutions or deletions, mostly in the region of the loop β5-β6. As OXA-48 hydrolyzes carbapenems but lacks significant expanded-spectrum cephalosporin (ESC) hydrolytic activity, ESCs were suggested as a therapeutic option. Here, we have characterized OXA-517, a natural variant of OXA-48- with an Arg214Lys substitution and a deletion of Ile215 and Glu216 in the β5-β6 loop, capable of hydrolyzing at the same time ESC and carbapenems. MICs values of E. coli expressing blaOXA-517 gene revealed reduced susceptibility to carbapenems (similarly to OXA-48) and resistance to ESCs. Steady-state kinetic parameters revealed high catalytic efficiencies for ESCs and carbapenems. The blaOXA-517 gene was located on a ca. 31-kb plasmid identical to the prototypical IncL blaOXA-48-carrying plasmid except for an IS1R-mediated deletion of 30.7-kb in the tra operon. The crystal structure of OXA-517, determined to 1.86 Å resolution, revealed an expanded active site compared to that of OXA-48, which allows for accommodation of the bulky ceftazidime substrate. Our work illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutation/deletion in the β5-β6 loop to extend its hydrolysis profile to encompass most β-lactam substrates.
Collapse
|
3
|
Jain D, Verma J, Ghosh AS. Deciphering the role of residues in the loops nearing the active site of OXA-58 in imparting beta-lactamase activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35766983 DOI: 10.1099/mic.0.001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The existence of OXA-58 carbapenemase alone or in combination with other beta-lactam resistance factors poses significant beta-lactam resistance. The exact mechanism of action of OXA type beta-lactamases is debatable due to the involvement of multiple residues within or outside the active site. In the present work, we have elucidated the relative role of residues present in the putative omega (W169, L170, K171) and β6-β7 (A226 and D228) loops on the activity of OXA-58 by substituting into alanine (and aspartate for A226) through site-directed mutagenesis. E. coli cells harbouring OXA-58, substituted at the putative omega loop, manifest a significant decrease in the beta-lactam resistance profile than that of the cells expressing OXA-58. Further, a reduction in the catalytic efficiency is observed for the purified variants of OXA-58 carrying individual substitutions in the putative omega loop than that of OXA-58. However, the addition of NaHCO3 (for carbamylation of K86) increases catalytic efficiency of the individual protein as revealed by nitrocefin hydrolysis assay and steady state kinetics. Moreover, W169A and K171A substitutions show significant effects on the thermal stability of OXA-58. Therefore, we conclude that the putative omega loop residues W169, L170 and K171, individually, have significant role in the activity and stability of OXA-58, mostly by stabilising carbamylated lysine of active site.
Collapse
Affiliation(s)
- Diamond Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
4
|
Hirvonen VA, Weizmann TM, Mulholland AJ, Spencer J, van der Kamp MW. Multiscale Simulations Identify Origins of Differential Carbapenem Hydrolysis by the OXA-48 β-Lactamase. ACS Catal 2022; 12:4534-4544. [PMID: 35571461 PMCID: PMC9097296 DOI: 10.1021/acscatal.1c05694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Indexed: 12/27/2022]
Abstract
OXA-48 β-lactamases are frequently encountered in bacterial infections caused by carbapenem-resistant Gram-negative bacteria. Due to the importance of carbapenems in the treatment of healthcare-associated infections and the increasingly wide dissemination of OXA-48-like enzymes on plasmids, these β-lactamases are of high clinical significance. Notably, OXA-48 hydrolyzes imipenem more efficiently than other commonly used carbapenems, such as meropenem. Here, we use extensive multiscale simulations of imipenem and meropenem hydrolysis by OXA-48 to dissect the dynamics and to explore differences in the reactivity of the possible conformational substates of the respective acylenzymes. Quantum mechanics/molecular mechanics (QM/MM) simulations of the deacylation reaction for both substrates demonstrate that deacylation is favored when the 6α-hydroxyethyl group is able to hydrogen bond to the water molecule responsible for deacylation but disfavored by the increasing hydration of either oxygen of the carboxylated Lys73 general base. Differences in free energy barriers calculated from the QM/MM simulations correlate well with the experimentally observed differences in hydrolytic efficiency between meropenem and imipenem. We conclude that the impaired breakdown of meropenem, compared to imipenem, which arises from a subtle change in the hydrogen bonding pattern between the deacylating water molecule and the antibiotic, is most likely induced by the meropenem 1β-methyl group. In addition to increased insights into carbapenem breakdown by OXA β-lactamases, which may aid in future efforts to design antibiotics or inhibitors, our approach exemplifies the combined use of atomistic simulations in determining the possible different enzyme-substrate substates and their influence on enzyme reaction kinetics.
Collapse
Affiliation(s)
- Viivi
H. A. Hirvonen
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Tal Moshe Weizmann
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, University
Walk, Bristol BS8 1TD, U.K.
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
5
|
To Be or Not to Be an OXA-48 Carbapenemase. Microorganisms 2022; 10:microorganisms10020258. [PMID: 35208713 PMCID: PMC8875484 DOI: 10.3390/microorganisms10020258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/03/2022] Open
Abstract
Since the first description of OXA-48, more than forty variants have been recovered from Enterobacterales isolates. Whereas some OXA-48-related enzymes have been reported as conferring similar resistance patterns, namely, the hydrolysis of carbapenems and penicillins with very weak or almost no activity against expanded-spectrum cephalosporins, some have reduced carbapenem and temocillin hydrolysis, and others hydrolyze expanded-spectrum cephalosporins and carbapenems only marginally. With such drastic differences in the hydrolytic profile, especially of carbapenems, it becomes urgent to establish hydrolytic cutoffs in order to determine when an OXA-48-like enzyme may be considered as a carbapenemase or not. With this aim, the coefficient of activity for imipenem (kcat/Km) was determined for a total of 30 enzymes, including OXA-48, OXA-48-like natural variants, and OXA-48 synthetic mutants. In addition, six different methods for the detection of carbapenemase-producers were performed. The coefficients of activity for imipenem for all the different enzymes went from 550 mM−1·s−1 to 0.02 mM−1·s−1. In order to match the coefficient of activity results with the biochemical confirmatory tests, we suggest the value of 0.27 mM−1·s−1 as the cutoff above which an OXA-48 variant may be considered a carbapenem-hydrolyzing enzyme.
Collapse
|
6
|
KPC-39-Mediated Resistance to Ceftazidime-Avibactam in a Klebsiella pneumoniae ST307 Clinical Isolate. Antimicrob Agents Chemother 2021; 65:e0116021. [PMID: 34606331 DOI: 10.1128/aac.01160-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resistance to the ceftazidime (CAZ)-avibactam (AVI) combination is increasingly being reported. Here, we report a CAZ-AVI-resistant Klebsiella pneumoniae strain belonging to the high-risk sequence type 307 (ST307) clone and producing Klebsiella pneumoniae carbapenemase 39 (KPC-39), a single-amino-acid variant of KPC-3 (A172T). Cloning experiments, steady-state kinetic parameters, and molecular dynamics simulations revealed a loss of carbapenemase activity and increased affinity for CAZ. KPC-39 was identified in a patient without prior exposure to CAZ-AVI, suggesting silent dissemination in European health care settings.
Collapse
|
7
|
Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob Agents Chemother 2021; 65:AAC.00184-21. [PMID: 33753332 DOI: 10.1128/aac.00184-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OXA-48-type β-lactamases are now routinely encountered in bacterial infections caused by carbapenem-resistant Enterobacterales These enzymes are of high and growing clinical significance due to the importance of carbapenems in treatment of health care-associated infections by Gram-negative bacteria, the wide and increasing dissemination of OXA-48 enzymes on plasmids, and the challenges posed by their detection. OXA-48 confers resistance to penicillin (which is efficiently hydrolyzed) and carbapenem antibiotics (which is more slowly broken down). In addition to the parent enzyme, a growing array of variants of OXA-48 is now emerging. The spectrum of activity of these variants varies, with some hydrolyzing expanded-spectrum oxyimino-cephalosporins. The growth in importance and diversity of the OXA-48 group has motivated increasing numbers of studies that aim to elucidate the relationship between structure and specificity and establish the mechanistic basis for β-lactam turnover in this enzyme family. In this review, we collate recently published structural, kinetic, and mechanistic information on the interactions between clinically relevant β-lactam antibiotics and inhibitors and OXA-48 β-lactamases. Collectively, these studies are starting to form a detailed picture of the underlying bases for the differences in β-lactam specificity between OXA-48 variants and the consequent differences in resistance phenotype. We focus specifically on aspects of carbapenemase and cephalosporinase activities of OXA-48 β-lactamases and discuss β-lactamase inhibitor development in this context. Throughout the review, we also outline key open research questions for future investigation.
Collapse
|
8
|
Abstract
Very low antibiotic concentrations have been shown to drive the evolution of antimicrobial resistance. While substantial progress has been made to understand the driving role of low concentrations during resistance development for different antimicrobial classes, the importance of β-lactams, the most commonly used antibiotics, is still poorly studied. Our current understanding of how low antibiotic concentrations shape the evolution of contemporary β-lactamases is limited. Using the widespread carbapenemase OXA-48, we tested the long-standing hypothesis that selective compartments with low antibiotic concentrations cause standing genetic diversity that could act as a gateway to developing clinical resistance. Here, we subjected Escherichia coli expressing blaOXA-48, on a clinical plasmid, to experimental evolution at sub-MICs of ceftazidime. We identified and characterized seven single variants of OXA-48. Susceptibility profiles and dose-response curves showed that they increased resistance only marginally. However, in competition experiments at sub-MICs of ceftazidime, they demonstrated strong selectable fitness benefits. Increased resistance was also reflected in elevated catalytic efficiencies toward ceftazidime. These changes are likely caused by enhanced flexibility of the Ω- and β5-β6 loops and fine-tuning of preexisting active site residues. In conclusion, low-level concentrations of β-lactams can drive the evolution of β-lactamases through cryptic phenotypes which may act as stepping-stones toward clinical resistance. IMPORTANCE Very low antibiotic concentrations have been shown to drive the evolution of antimicrobial resistance. While substantial progress has been made to understand the driving role of low concentrations during resistance development for different antimicrobial classes, the importance of β-lactams, the most commonly used antibiotics, is still poorly studied. Here, we shed light on the evolutionary impact of low β-lactam concentrations on the widespread β-lactamase OXA-48. Our data indicate that the exposure to β-lactams at very low concentrations enhances β-lactamase diversity and drives the evolution of β-lactamases by significantly influencing their substrate specificity. Thus, in contrast to high concentrations, low levels of these drugs may substantially contribute to the diversification and divergent evolution of these enzymes, providing a standing genetic diversity that can be selected and mobilized when antibiotic pressure increases.
Collapse
|
9
|
Stojanoski V, Hu L, Sankaran B, Wang F, Tao P, Prasad BVV, Palzkill T. Mechanistic Basis of OXA-48-like β-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis 2021; 7:445-460. [PMID: 33492952 DOI: 10.1021/acsinfecdis.0c00798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are an important source of resistance to these last resort β-lactam antibiotics. OXA-48 is a member of a group of CHDLs named OXA-48-like enzymes. On the basis of sequence similarity, OXA-163 can be classified as an OXA-48-like enzyme, but it has altered substrate specificity. Compared to OXA-48, it shows impaired activity for carbapenems but displays an enhanced hydrolysis of oxyimino-cephalosporins. Here, we address the mechanistic and structural basis for carbapenem hydrolysis by OXA-48-like enzymes. Pre-steady-state kinetic analysis indicates that the rate-limiting step for OXA-48 and OXA-163 hydrolysis of carbapenems is deacylation and that the greatly reduced carbapenemase activity of OXA-163 compared to that of OXA-48 is due entirely to a slower deacylation reaction. Furthermore, our structural data indicate that the positioning of the β5-β6 loop is necessary for carbapenem hydrolysis by OXA-48. A major difference between the OXA-48 and OXA-163 complexes with carbapenems is that the 214-RIEP-217 deletion in OXA-163 creates a large opening in the active site that is absent in the OXA-48/carbapenem structures. We propose that the larger active site results in less constraint on the conformation of the 6α-hydroxyethyl group in the acyl-enzyme. The acyl-enzyme intermediate assumes multiple conformations, most of which are incompatible with rapid deacylation. Consistent with this hypothesis, molecular dynamics simulations indicate that the most stable complex is formed between OXA-48 and imipenem, which correlates with the OXA-48 hydrolysis of imipenem being the fastest observed. Furthermore, the OXA-163 complexes with imipenem and meropenem are the least stable and show significant conformational fluctuations, which correlates with the slow hydrolysis of these substrates.
Collapse
Affiliation(s)
| | | | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,
| | - Feng Wang
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | | | | |
Collapse
|