1
|
Chin M, Diao T. Industrial and Laboratory Technologies for the Chemical Recycling of Plastic Waste. ACS Catal 2024; 14:12437-12453. [PMID: 39169909 PMCID: PMC11334192 DOI: 10.1021/acscatal.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Synthetic polymers play an indispensable role in modern society, finding applications across various sectors ranging from packaging, textiles, and consumer products to construction, electronics, and industrial machinery. Commodity plastics are cheap to produce, widely available, and versatile to meet diverse application needs. As a result, millions of metric tons of plastics are manufactured annually. However, current approaches for the chemical recycling of postconsumer plastic waste, primarily based on pyrolysis, lag in efficiency compared to their production methods. In recent years, significant research has focused on developing milder, economically viable methods for the chemical recycling of commodity plastics, which involves converting plastic waste back into monomers or transforming it into other valuable chemicals. This Perspective examines both industrial and cutting-edge laboratory-scale methods contributing to recent advancements in the field of chemical recycling.
Collapse
Affiliation(s)
- Mason
T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
2
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Connor L Witt
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - James J Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
3
|
Mow R, Russell-Parks GA, Redwine GEB, Petel BE, Gennett T, Braunecker WA. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1579-1590. [PMID: 38370283 PMCID: PMC10870717 DOI: 10.1021/acs.chemmater.3c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Several synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H2, temperatures where PLs lose their fluidity. Covalent organic framework (COF)-based PLs that could reversibly form stable complexes with H2 near ambient temperatures would represent a promising development for gas storage and transport applications. We report here the development, characterization, and evaluation of a material with these remarkable characteristics based on Cu(I)-loaded COF colloids. Our synthetic strategy required tailoring conditions for growing robust coatings of poly(dimethylsiloxane)-methacrylate (PDMS-MA) around COF colloids using atom transfer radical polymerization (ATRP). We demonstrate exquisite control over the coating thickness on the colloidal COF, quantified by transmission electron microscopy and dynamic light scattering. The coated COF material was then suspended in a liquid polymer matrix to make a PL. CO2 isotherms confirmed that the coating preserved the general porosity of the COF in the free-flowing liquid, while CO sorption measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirmed the preservation of Cu(I) coordination sites. We then evaluated the gas sorption phenomenon in the Cu(I)-COF-based PLs using DRIFTS and temperature-programmed desorption measurements. In addition to confirming that H2 transport is possible at or near mild refrigeration temperatures with these materials, our observations indicate that H2 diffusion is significantly influenced by the glass-transition temperature of both the coating and the liquid matrix. The latter result underscores an additional potential advantage of PLs in tailoring gas diffusion and storage temperatures through the coating composition.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Grace E. B. Redwine
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Brittney E. Petel
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Lohmann V, Jones GR, Truong NP, Anastasaki A. The thermodynamics and kinetics of depolymerization: what makes vinyl monomer regeneration feasible? Chem Sci 2024; 15:832-853. [PMID: 38239674 PMCID: PMC10793647 DOI: 10.1039/d3sc05143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Depolymerization is potentially a highly advantageous method of recycling plastic waste which could move the world closer towards a truly circular polymer economy. However, depolymerization remains challenging for many polymers with all-carbon backbones. Fundamental understanding and consideration of both the kinetics and thermodynamics are essential in order to develop effective new depolymerization systems that could overcome this problem, as the feasibility of monomer generation can be drastically altered by tuning the reaction conditions. This perspective explores the underlying thermodynamics and kinetics governing radical depolymerization of addition polymers by revisiting pioneering work started in the mid-20th century and demonstrates its connection to exciting recent advances which report depolymerization reaching near-quantitative monomer regeneration at much lower temperatures than seen previously. Recent catalytic approaches to monomer regeneration are also explored, highlighting that this nascent chemistry could potentially revolutionize depolymerization-based polymer recycling in the future.
Collapse
Affiliation(s)
- Victoria Lohmann
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
- Monash Institute of Pharmaceutical Sciences, Monash University 399 Royal Parade Parkville VIC 3152 Australia
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
5
|
Jones GR, Wang HS, Parkatzidis K, Whitfield R, Truong NP, Anastasaki A. Reversed Controlled Polymerization (RCP): Depolymerization from Well-Defined Polymers to Monomers. J Am Chem Soc 2023; 145:9898-9915. [PMID: 37127289 PMCID: PMC10176471 DOI: 10.1021/jacs.3c00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers. This perspective focuses on the emerging field of depolymerization from polymers synthesized by controlled polymerizations including radical, ionic, and metathesis polymerizations. We provide a critical review of current literature categorized according to polymerization technique and explore numerous concepts and ideas which could be implemented to further enhance depolymerization including lower temperature systems, catalytic depolymerization, increasing polymer scope, and controlled depolymerization.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hyun Suk Wang
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Dependence of polymer tacticity and polymerization rate on conversion, solvent, chain length in radical polymerization of captodative-substituted ethyl acetoxyacrylate. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Blosch SE, Alaboalirat M, Eades CB, Scannelli SJ, Matson JB. Solvent Effects in Grafting-through Ring-Opening Metathesis Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Cabell B. Eades
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg 24061, Virginia, United States
| |
Collapse
|
8
|
Martinez MR, Dworakowska S, Gorczyński A, Szczepaniak G, Bossa FDL, Matyjaszewski K. Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2‐(oligo(ethylene oxide) methyl ether)acrylate macromonomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Sylwia Dworakowska
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Department of Biotechnology and Renewable Materials, Faculty of Chemical Engineering and Technology Cracow University of Technology Cracow Poland
| | - Adam Gorczyński
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Faculty of Chemistry Adam Mickiewicz University Poznań Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
9
|
Cong Y, Vatankhah-Varnosfaderani M, Karimkhani V, Keith AN, Leibfarth FA, Martinez MR, Matyjaszewski K, Sheiko SS. Understanding the Synthesis of Linear–Bottlebrush–Linear Block Copolymers: Toward Plastomers with Well-Defined Mechanical Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yidan Cong
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | | | - Vahid Karimkhani
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | - Andrew N. Keith
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| | - Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3220, United States
| |
Collapse
|
10
|
Martinez MR, Cong Y, Sheiko SS, Matyjaszewski K. A Thermodynamic Roadmap for the Grafting-through Polymerization of PDMS 11MA. ACS Macro Lett 2020; 9:1303-1309. [PMID: 35638616 DOI: 10.1021/acsmacrolett.0c00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Grafting-through atom transfer radical polymerization (ATRP) was used to polymerize a sterically hindered poly(dimethylsiloxane) methacrylate (PDMS11MA, Mn = 1000) macromonomer to high conversion as a function of temperature, solvent, initial monomer concentration, and pressure. Higher polymerization yields were obtained when polymerizations were conducted at (i) lower temperature (T), (ii) in a poor solvent for the side chain, (iii) higher initial monomer concentration ([M]0), and (iv) higher pressure by mitigating the contribution of the equilibrium monomer concentration ([M]eq). The enthalpy of polymerization (ΔHp) and entropy of polymerization (ΔSp) were more negative in poor solvents. Polymerizations at ambient pressure required higher [M]0, use of a poor solvent, and lower temperatures to reach higher conversion with good control, whereas high pressure ATRP (HP-ATRP) displayed better control under dilute conditions. Grafting-through polymerization at high P and higher [M]0 was less controlled, plausibly due to limited solubility and mobility of the copper catalyst in the highly viscous medium.
Collapse
Affiliation(s)
- Michael R Martinez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yidan Cong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sergei S Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|