1
|
Merouani SR, Kulagin R, Bondarenko V, Hosseinnezhad R, Zaïri F, Vozniak I. Strategy for Fabricating Multiple-Shape Memory Polymeric Materials Based on Solid State Mixing. ACS Macro Lett 2025:129-134. [PMID: 39799477 DOI: 10.1021/acsmacrolett.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Traditionally, multiple shape memory polymers (multiple-SMPs) are created by forming either immiscible blends with high phase continuity (cocontinuous or multilayer phase morphology) or miscible blends that exhibit compositional heterogeneity at the nanoscale. Here, a new strategy for the fabrication of multiple-SMPs is proposed. It consists of the possibility of homogeneous mixing of immiscible polymers in the solid state under high pressure and shear deformation conditions. The blends formed in this way exhibit homogeneity of mixing down to the nanoscale, up to 40-95 nm. The transition from immiscible to miscible blends leads to an improvement not only in shape memory but also in the mechanical performance of the blends formed. Polypropylene (PP) and polystyrene (PS) were selected as pairs of immiscible polymers. The method of solid phase mixing is high pressure torsion (HPT). It was shown that the HPT-processed 50% PP/50% PS blend is able to exhibit an excellent triple shape memory effect (shape fixation of ∼94-95%, and recovery of ∼85-95%) with widely tunable (low and high) transition temperatures.
Collapse
Affiliation(s)
- Salim-Ramy Merouani
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza str., 112, Lodz 90363, Poland
| | - Roman Kulagin
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vladislav Bondarenko
- Kryvyi Rih State Pedagogical University, Gagarin av. 54, 50086 Kryvyi Rih, Ukraine
| | - Ramin Hosseinnezhad
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland
| | - Fahmi Zaïri
- Laboratoire de Génie Civil et géo-Environnement, Université de Lille, IMT Nord Europe, JUNIA, Université d'Artois, ULR 4515-LGCgE, Lille 59000, France
| | - Iurii Vozniak
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland
| |
Collapse
|
2
|
Guo Q, Zhang Y, Ruan H, Sun H, Wang T, Wang Q, Wang C. Solvent Content Controlling Strategy for Cocrystallizable Polyesters Enables a Stress-Free Two-Way Shape Memory Effect with Wider Service Temperatures. Macromol Rapid Commun 2024; 45:e2300534. [PMID: 37840366 DOI: 10.1002/marc.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Indexed: 10/17/2023]
Abstract
It is challenging to enhance the stress-free two-way shape memory (stress-free TWSM) effect to obtain a wide range of response temperatures. Herein, a polycaprolactone (PCL)/poly(ω-pentadecalactone) (PPDL) is photocured under UV light irradiation in the solvent of 1,1,2-trichloroethane (TCA), to obtain a series of cross-linked polyesters (CPES). Controlling solvent content (SC) which is removed after the polymerization allows the yielded CPES to perform a regulatable thermodynamic and stress-free TWSM properties. High SC is beneficial to reduce the degree of chain overlap (C/C* ) of PPDL chain segments in the PCL-based CPES network, then causes the cocrystallization of PCL and PPDL and yielding an additional melting-transitions (Tm ). An enhanced stress-free TWSM is obtained in high SC samples (CPES-15-90), reflected in the attainment of a wide range of response temperature, which means a wider service temperature. The enhancement is reflected in higher reversible strain of high SC samples compared with the samples prepared with low SC when varying high trigger temperature (Thigh ). Even at high Thigh , the high SC sample still has reversible strain. Therefore, controlling SC strategy for photocuring copolyester not only provides a new preparation approach for high-performance shape memory (SM) polymers, but also offers new condensed polymer structure to explore.
Collapse
Affiliation(s)
- Qi Guo
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongwei Ruan
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huiting Sun
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chao Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
3
|
Wong JW, Yang X, Zhao Q, Xue Y, Lok TJ, Wang L, Fan X, Xiao X, Wong TW, Li T, Chen L, Ismail AF. Sustainable Approach for the Synthesis of a Semicrystalline Polymer with a Reversible Shape-Memory Effect. ACS Macro Lett 2023; 12:563-569. [PMID: 37052196 DOI: 10.1021/acsmacrolett.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Shape-memory polymers (SMPs) have demonstrated potential for use in automotive, biomedical, and aerospace industries. However, ensuring the sustainability of these materials remains a challenge. Herein, a sustainable approach to synthesize a semicrystalline polymer using biomass-derivable precursors via catalyst-free polyesterification is presented. The synthesized biodegradable polymer, poly(1,8-octanediol-co-1,12-dodecanedioate-co-citrate) (PODDC), exhibits excellent shape-memory properties, as evidenced by good shape fixity and shape recovery ratios of 98%, along with a large reversible actuation strain of 28%. Without the use of a catalyst, the mild polymerization enables the reconfiguration of the partially cured two-dimensional (2D) film to a three-dimensional (3D) geometric form in the middle process. This study appears to be a step forward in developing sustainable SMPs and a simple way for constructing a 3D structure of a permanent shape.
Collapse
Affiliation(s)
- Jie-Wei Wong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Tow-Jie Lok
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Li Wang
- School of Big Health and Intelligent Engineering, Chengdu Medical College, 610500, Chengdu, China
| | - Xiulin Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xuezhang Xiao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Lixin Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
4
|
Chi D, Gu H, Wang J, Wu C, Wang R, Cheng Z, Zhang D, Xie Z, Liu Y. Narrow response temperature range with excellent reversible shape memory effect for semi-crystalline networks as soft actuators. MATERIALS HORIZONS 2023. [PMID: 37039134 DOI: 10.1039/d3mh00270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Complex and controlled reversible actuation inevitably relies on changing thermal fields (direct or indirect) for semi-crystalline reversible shape memory networks. Unfortunately, the non-tunability of thermal signals often brings potential limitations to actuators' applications. In practice, a wide response temperature range (T-range) formed by Thigh and Tlow in the remarkable reversible actuation is an obvious fact. Herein, we demonstrate the tunability of the transition temperatures while stably maintaining excellent actuation abilities. We further verified that the narrow T-range (24 °C) that had not been reported could present more than 17% reversible strain. Special parameter optimization provides opportunities for potential non-implantable biomedical applications. Therefore, based on target 2W-SMP, a vehicle concept with the drug release and vehicle recovery ability was proposed, proving our approach's feasibility.
Collapse
Affiliation(s)
- Dequan Chi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Haoyu Gu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jingfeng Wang
- Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
| | - Chao Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Ruijie Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
5
|
Xu Z, Meng S, Wei DW, Bao RY, Wang Y, Ke K, Yang W. Hierarchical network relaxation of a dynamic cross-linked polyolefin elastomer for advanced reversible shape memory effect. NANOSCALE 2023; 15:5458-5468. [PMID: 36852586 DOI: 10.1039/d2nr06902d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Reversible shape-memory polymers (RSMPs) are highly desired for soft actuators due to the repeatability of deformation. Herein, a polyolefin elastomer vitrimer (POEV) was prepared by constructing a dynamic cross-linked network based on boronic ester bonds. POEV showed varied network relaxation in a wide temperature range due to hierarchical network relaxation, and then the entropy decreased and the relaxation of POEV chains was facilely controlled by temperature. The controllable relaxation of POEV by programming the temperature enabled the actuation domain with a reduction in entropy and the skeleton domain with a relatively high entropy can be built in POEV, greatly affecting the reversible shape memory effects (RSMEs). The topological rearrangement resulted from the activated exchange of dynamic covalent bonds, which enables POEV with good shape reconfigurability, and allows for complicated 3D shapes and shape-shifting on demand. More interestingly, combining the decreasing entropy of POEV chains and fully topological rearrangement tailored by temperature, hybrid aligned carbon nanotubes (CNTs) can be constructed in POEV via a two-stage training. Then, the aligned CNTs can enhance the elasticity and act as a hybrid skeleton for RSMEs, avoiding the negative impact of CNTs on the reversible actuation strain. The hierarchical network relaxation facilitates combining all these unusual properties in one shape memory network synergistically, paving new avenues for realizing smart materials with advanced RSME.
Collapse
Affiliation(s)
- Zhao Xu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| | - Sen Meng
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| | - Dun-Wen Wei
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| | - Yu Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
6
|
Xu Z, Liu YB, Wei DW, Bao RY, Wang Y, Ke K, Yang W. Configurational Entropy Regulation in Polyolefin Elastomer/Paraffin Wax Vitrimers by Thermally Responsive Liquid-Solid Transition for Force Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12423-12433. [PMID: 36821339 DOI: 10.1021/acsami.2c22997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The work output of shape memory polymers during shape shifting is desired for practical application as actuators. Herein, a polyolefin elastomer (POE) and paraffin wax (PW) are co-cross-linked by dynamic boronic ester bonds to enhance the network elasticity and the stress transfer between the two phases, endowing high force storage capacity to the prepared vitrimers. Depending on the phase of PW, one-way force storage is realized by programming at a low temperature (25 °C), owing to which solid PW can promote the locking of POE chains in a low-entropy state, while reversible force storage can be realized by programming at a high temperature (75 °C), owing to which the relaxation of chains facilitated by liquid PW can promote the construction of a stable structure. Based on one-way force storage, a weight-lifting machine with a weight of 20 mg prestrained at 25 °C can lift a 100 g weight, showing a lifting ratio of no less than 5000, with a high work output of 0.98 J/g. A high-temperature alarm can be triggered at varied temperatures (43-56 °C) through controlled force release by adjusting the PW content and programmed prestrains. Based on the reversible force storage, crawling robots and artificial muscles with a work output of 0.025 J/g are demonstrated. The dynamic cross-linking network also confers mold-free self-healing capability to POE/PW vitrimers, and the repair efficiency is enhanced compared with the POE vitrimer due to the improved POE chain motion by liquid PW. The realized one-way and reversible force storage and self-healing by POE/PW vitrimers pave the way for the application of SMPs in the fields of soft robotic actuators.
Collapse
Affiliation(s)
- Zhao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yong-Bo Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dun-Wen Wei
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
7
|
Li Z, Mei S, Luo L, Li S, Chen X, Zhang Y, Zhao W, Zhang X, Shi G, He Y, Cui Z, Fu P, Pang X, Liu M. Multiple/Two-Way Shape Memory Poly(urethane-urea-amide) Elastomers. Macromol Rapid Commun 2023; 44:e2200693. [PMID: 36250510 DOI: 10.1002/marc.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.
Collapse
Affiliation(s)
- Zhen Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxiang Mei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyin Chen
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Wei Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Ge Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Yanjie He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Zhe Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Peng Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Minying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| |
Collapse
|
8
|
Wang J, Zhang H, Lei J, Wu M, Liu W, Qu JP. Stress-Free Two-Way Shape-Memory Mechanism of a Semicrystalline Network with a Broad Melting Transition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jin Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - He Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Junjie Lei
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Mengxuan Wu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou510640, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
9
|
Inverardi N, Toselli M, Scalet G, Messori M, Auricchio F, Pandini S. Stress-Free Two-Way Shape Memory Effect of Poly(ethylene glycol)/Poly(ε-caprolactone) Semicrystalline Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicoletta Inverardi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25133 Brescia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Maurizio Toselli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100 Pavia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Massimo Messori
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, 27100 Pavia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Stefano Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25133 Brescia, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
10
|
Hao C, Yue H, Zhou J, He S, Liu H, Huang M, Liu W. Stress‐free two‐way shape memory property and microstructure evolution of single‐phase polymer networks. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaobo Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Huimin Yue
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Junjie Zhou
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Suqin He
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
- Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Hao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Miaoming Huang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Wentao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
11
|
Xu Z, Wei DW, Bao RY, Wang Y, Ke K, Yang MB, Yang W. Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22521-22530. [PMID: 35522609 DOI: 10.1021/acsami.2c07119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft actuators with integrated mechanical and actuation properties and self-sensing ability are still a challenge. Herein, a stiffness variable polyolefin elastomer (POE) with a reversible shape memory effect is prepared by introducing a typical phase change material, i.e., paraffin wax (PW). It is found that the variable stiffness of POE induced by PW can balance the reversible strain and load-bearing capability of actuators. Especially, carbon nanotubes (CNTs) are concentrated in a thin surface layer by spraying and hot pressing in the soft state of POE/PW blends, providing signal transductions for the strain and temperature perception for actuators. Taking advantage of tunable reversible deformation and mechanical transformation of the POE/PW actuator, different biomimetic robotics, including grippers with high load-bearing capability (weight-lifting ratio > 146), walking robots that can sense angles of joints, and high-temperature warning robots are demonstrated. A scheme combining the variable stiffness and electrical properties provides a versatile strategy to integrate actuation performance and self-sensing ability, inspiring the development of multifunctional composite designs for soft robotics.
Collapse
Affiliation(s)
- Zhao Xu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Dun-Wen Wei
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Yu Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| |
Collapse
|
12
|
Wang J, Tu Z, Zhang H, Wang MM, Liu W, Qu JP. Actuation Mechanisms of a Semicrystalline Elastomer-Based Polymer Artificial Muscle with High Actuation Strain. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhikai Tu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Huanhuan Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meng-Meng Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Zhang W, Zhou J, Cao Z, Wu X, Wang H, Han S, Zhang Y, Sun F, Zhang T. In Situ Construction of Thermotropic Shape Memory Polymer in Wood for Enhancing Its Dimensional Stability. Polymers (Basel) 2022; 14:738. [PMID: 35215651 PMCID: PMC8876273 DOI: 10.3390/polym14040738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
The extension of wood to a wider field has been restrained significantly due to its dimensional instability that arises from variation in moisture content, which in turn brings about the risk of cracking, warping or distortion. This work proposed a novel strategy to stabilize wood by means of the in situ construction of a thermotropic shape memory polymer (SMP) inside wood. The cross-linked copolymer network (PMP) with good shape memory behavior was first investigated based on the reaction of methyl methacrylate (MMA) and polyethylene glycol diacrylate (PEGDA) in a water/ethanol solution; then, the PMP was constructed inside wood via vacuum-pressure impregnation and in situ polymerization. The weight gain, volume increment and morphology observations clearly revealed that the PMP was mainly present in wood cell lumens, cell walls and pits. The presence of PMP significantly enhanced the dimensional stability of and reduced the cracks in wood. The desirable shape recovery abilities of PMP under heating-cooling cycles were considered to be the main reasons for wood dimensional stabilization, because it could counteract the internal stress or retard the shrinkage of cell walls once water was evaporated from the wood. This study provided a novel and reliable approach for wood modification.
Collapse
Affiliation(s)
- Wenhao Zhang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Jianchao Zhou
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Zhijin Cao
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Xinxing Wu
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Hui Wang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Shuaibo Han
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Yan Zhang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Fangli Sun
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Ting Zhang
- Xilinmen Furniture Co., Ltd., Shaoxing 312000, China;
| |
Collapse
|
14
|
Xu Z, Fan ZY, Wei DW, Bao RY, Wang Y, Ke K, Liu ZY, Yang MB, Yang W. Tunable reversible deformation of semicrystalline polymer networks based on temperature memory effect. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Zhou J, Yue H, Huang M, Hao C, He S, Liu H, Liu W, Zhu C, Dong X, Wang D. Arbitrarily Reconfigurable and Thermadapt Reversible Two-Way Shape Memory Poly(thiourethane) Accomplished by Multiple Dynamic Covalent Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43426-43437. [PMID: 34491715 DOI: 10.1021/acsami.1c13057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fabrication of a single polymer network that exhibits a good reversible two-way shape memory effect (2W-SME), can be formed into arbitrarily complex three-dimensional (3D) shapes, and is recyclable remains a challenge. Herein, we design and fabricate poly(thiourethane) (PTU) networks with an excellent thermadapt reversible 2W-SME, arbitrary reconfigurability, and good recyclability via the synergistic effects of multiple dynamic covalent bonds (i.e., ester, urethane, and thiourethane bonds). The PTU samples with good mechanical performance simultaneously demonstrate a maximum tensile stress of 29.7 ± 1.1 MPa and a high strain of 474.8 ± 7.5%. In addition, the fraction of reversible strain of the PTU with 20 wt % hard segment reaches 22.4% during the reversible 2W-SME, where the fraction of reversible strain is enhanced by self-nucleated crystallization of the PTU. A sample with arbitrarily complex permanent 3D shapes can be realized via the solid-state plasticity, and that sample also exhibits excellent reversible 2W-SME. A smart light-responsive actuator with a double control switch is fabricated using a reversible two-way shape memory PTU/MXene film. In addition, the PTU networks are de-cross-linked by alcohol solvolysis, enabling the recovery of monomers and the realization of recyclability. Therefore, the present study involving the design and fabrication of a PTU network for potential applications in intelligent actuators and multifunctional shape-shifting devices provides a new strategy for the development of thermadapt reversible two-way shape memory polymers.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaobo Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Hao C, Wang K, Wang Z, Duan R, Liu H, Huang M, Liu W, He S, Zhu C. Triple one‐way and two‐way shape memory poly(ethylene‐co‐vinyl acetate)/poly(ε‐caprolactone) immiscible blends. J Appl Polym Sci 2021. [DOI: 10.1002/app.51426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chaobo Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Kaibin Wang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Zhuo Wang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Ruixia Duan
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Hao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Miaoming Huang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Wentao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Suqin He
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
- Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Chengshen Zhu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
17
|
Sangroniz L, Ocando C, Cavallo D, Müller AJ. Melt Memory Effects in Poly(Butylene Succinate) Studied by Differential Fast Scanning Calorimetry. Polymers (Basel) 2020; 12:E2796. [PMID: 33256010 PMCID: PMC7761523 DOI: 10.3390/polym12122796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022] Open
Abstract
It is widely accepted that melt memory effect on polymer crystallization depends on thermal history of the material, however a systematic study of the different parameters involved in the process has been neglected, so far. In this work, poly(butylene succinate) has been selected to analyze the effect of short times and high cooling/heating rates that are relevant from an industrial point of view by taking advantage of fast scanning calorimetry (FSC). The FSC experiments reveal that the width of melt memory temperature range is reduced with the time spent at the self-nucleation temperature (Ts), since annealing of crystals occurs at higher temperatures. The effectiveness of self-nuclei to crystallize the sample is addressed by increasing the cooling rate from Ts temperature. The effect of previous standard state on melt memory is analyzed by (a) changing the cooling/heating rate and (b) applying successive self-nucleation and annealing (SSA) technique, observing a strong correlation between melting enthalpy or crystallinity degree and the extent of melt memory. The acquired knowledge can be extended to other semicrystalline polymers to control accurately the melt memory effect and therefore, the time needed to process the material and its final performance.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Connie Ocando
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Alejandro J. Müller
- POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|