1
|
Aktas Eken G, Huang Y, Prucker O, Rühe J, Ober C. Advancing Glucose Sensing Through Auto-Fluorescent Polymer Brushes: From Surface Design to Nano-Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309040. [PMID: 38334235 DOI: 10.1002/smll.202309040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.
Collapse
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yuming Huang
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Oswald Prucker
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @FIT, Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Goerges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Christopher Ober
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Zhao H, Gao H, Chen T, Xie L, Ma Y, Sha J. Fabrication of patterned polymer brushes using programmable modulated light-excited controllable radical polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Jain K, Kanchanawong P, Sheetz MP, Zhou X, Cai H, Changede R. Ligand functionalization of titanium nanopattern enables the analysis of cell-ligand interactions by super-resolution microscopy. Nat Protoc 2022; 17:2275-2306. [PMID: 35896742 DOI: 10.1038/s41596-022-00717-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/26/2022] [Indexed: 12/19/2022]
Abstract
The spatiotemporal aspects of early signaling events during interactions between cells and their environment dictate multiple downstream outcomes. While advances in nanopatterning techniques have allowed the isolation of these signaling events, a major limitation of conventional nanopatterning methods is its dependence on gold (Au) or related materials that plasmonically quench fluorescence and, thus, are incompatible with super-resolution fluorescence microscopy. Here we describe a novel method that integrates nanopatterning with single-molecule resolution fluorescence imaging, thus enabling mechanistic dissection of molecular-scale signaling events in conjunction with nanoscale geometry manipulation. Our method exploits nanofabricated titanium (Ti) whose oxide (TiO2) is a dielectric material with no plasmonic effects. We describe the surface chemistry for decorating specific ligands such as cyclo-RGD (arginine, glycine and aspartate: a ligand for fibronectin-binding integrins) on TiO2 nanoline and nanodot substrates, and demonstrate the ability to perform dual-color super-resolution imaging on these patterns. Ti nanofabrication is similar to other metallic materials like Au, while the functionalization of TiO2 is relatively fast, safe, economical, easy to set up with commonly available reagents, and robust against environmental parameters such as humidity. Fabrication of nanopatterns takes ~2-3 d, preparation for functionalization ~1.5-2 d, and functionalization 3 h, after which cell culture and imaging experiments can be performed. We suggest that this method may facilitate the interrogation of nanoscale geometry and force at single-molecule resolution, and should find ready applications in early detection and interpretation of physiochemical signaling events at the cell membrane in the fields of cell biology, immunology, regenerative medicine, and related fields.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianjing Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Haogang Cai
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA.
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore. .,TeOra Pte. Ltd, Singapore, Singapore.
| |
Collapse
|