1
|
Xu J, Liu J, Hadjichristidis N. Regioselective Copolymerization of Glucose-Derived Allopyranoside Epoxide with Cyclic Anhydrides: Developing Precise Sugar-Functionalized Polyesters with Unique Altrose Linkages. J Am Chem Soc 2025; 147:945-956. [PMID: 39699955 DOI: 10.1021/jacs.4c13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Uniform sugar-functionalized polyesters combine the benefits of sugar's structural diversity, biocompatibility, and biodegradability with precise postfunctionalization capabilities, making them a highly valuable class of materials with extensive application potential. However, the irregular placement of hydroxyl groups has limited the synthesis of these polyesters. Here, we present the first platform for uniform sugar-functionalized polyesters via regioselective ring-opening copolymerizations (ROCOPs) of allopyranoside anhydrosugar epoxide (1, derived from d-glucose) with cyclic anhydrides, followed by complete selective deprotection. This method yields polyesters with controlled molecular weights, narrow molecular weight distributions (D̵ < 1.19), high glass transition temperatures (up to 188 °C), and uniform hydroxyl functionality. Furthermore, the degradation of the polyesters offers an efficient route for producing the highly valuable d-altrose. Mechanistic insights, supported by DFT calculations, as well as NMR and HPLC analyses, confirm the regioselective nucleophilic attack at the C2 position of the pyranose ring. Kinetic studies reveal a first-order dependence on 1 and a zero-order dependence on the cyclic anhydrides. Additionally, these uniform sugar-functionalized polyesters can be incorporated into triblock terpolymers through one-pot/one-step or one-pot/two-step procedures, forming uniform sugar-functionalized multiblock copolymers.
Collapse
Affiliation(s)
- Jiaxi Xu
- Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Jingjing Liu
- Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
2
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Li G, Zhang Z, Xiao W, Wu T, Xu J. Synthesis of functional polyacrylamide (co)polymers by organocatalyzed post-polymerization modification of non-activated esters. RSC Adv 2023; 13:28931-28939. [PMID: 37795050 PMCID: PMC10545946 DOI: 10.1039/d3ra04667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The broad application of polyacrylamides (PAMs) has greatly promoted the development of new synthetic methods to prepare PAM-based functional (co)polymers regarding their traditional preparation via the direct polymerization of various acrylamide monomers. Herein, we have explored the post-polymerization modification of the poly(2,2,2-trifluoroethyl acrylate) (PTFEA) homopolymer, a typical non-activated ester, and various amines using the organo-catalytic system involving 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,2,4-triazole (TA). The reaction kinetics (e.g., the optimized reaction solvent, temperature, time, initial molar ratio of amines to esters and the molar ratio of DBU to TA) were carefully studied with the modulus substrate of iso-propylamine as the formed poly(iso-propyl acrylamide) (PNIPAM) representing the most investigated PAM. The full and partial amidation of the esters in PTFEA could be precisely regulated just by controlling the kinetic conditions to give (co)polymers with designable compositions and structures. We have demonstrated that the poly(N-acryloyl pyrrolidine) obtained by the post-polymerization modification of non-activated ester and pyrrolidine exhibited a noticeable phase transition, which confirmed the robustness and versatility of the post-polymerization modification. The described method paves the way for the synthesis of various (co)polymers with amide side chains from readily available polymer precursors.
Collapse
Affiliation(s)
- Guoqing Li
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, College of Advanced Materials Engineering, Jiaxing Nanhu University Jiaxing 314001 P. R. China
| | - Zhiyi Zhang
- Jiangxi General Institute of Testing and Certification Nanchang 330052 P. R. China
| | - Wenhao Xiao
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Tongtong Wu
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, College of Advanced Materials Engineering, Jiaxing Nanhu University Jiaxing 314001 P. R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|