1
|
Ziegler K, Schlichter L, Post Y, Gröschel AH, Ravoo BJ. Photoresponsive Block Copolymer Nanostructures through Implementation of Arylazopyrazoles. ACS Macro Lett 2024; 13:1065-1071. [PMID: 39094101 DOI: 10.1021/acsmacrolett.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/04/2024]
Abstract
Responsive nanomaterials that can undergo reversible changes in morphology are interesting for the development of functional materials that interact with and respond to their environment. Amphiphilic block copolymers are well-known for their ability to create a wide range of supramolecular nanostructures in solution. Arylazopyrazoles (AAPs) are versatile molecular photoswitches, which change their configuration and hydrophobicity upon irradiation with UV light (365 nm, Z isomer, less hydrophobic) and green light (520 nm, E isomer, more hydrophobic). In this work, photoswitchable block copolymers containing arylazopyrazole tetraethylene glycol methacrylate (AAPMA) and oligo(ethylene glycol) methacrylate (OEGMA) forming amphiphilic POEGMA-b-PAAPMA with varying block lengths are prepared by RAFT polymerization. The photochemical properties of AAP persist in the polymers. Due to their amphiphilic structure, the polymers self-assemble into supramolecular morphologies in water. Remarkably, photoisomerization results in a reversible change in the self-assembly behavior. Specifically, spherical and cylindrical micelles are observed for POEGMA33-b-PAAPMA47 when illuminated with green or UV light during assembly. Furthermore, the morphology of assembled structures can be reversibly switched by subsequent irradiation with UV and green light.
Collapse
Affiliation(s)
- Katharina Ziegler
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Lisa Schlichter
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Yorick Post
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - André H Gröschel
- Bavarian Center for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
2
|
Wang Y, Guo J, He Z, Zhou Z, Shi S, Cheng X, Zhang W. Regulating the Chiroptical Expression of Aggregated Solvophobic Core by Solvophilic Segments. Macromol Rapid Commun 2024:e2400178. [PMID: 38683103 DOI: 10.1002/marc.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The investigation of chiral supramolecular stacking is of essential significance for the understanding of the origin of homochirality in nature. Unlike structurally well-defined amphiphilic liposomes, it remains unclear whether the solvophilic segments of the amphiphilic block copolymer play a decisive role in the construction of asymmetric superstructures. Herein, insights are presented into the stacking patterns and morphological regulation in azobenzene-containing block copolymer assemblies solely by modulating the solvophilic chain length. The solvophilic poly(methacrylic acid) (PMAA) segments of different molecular weights could cause multi-mode chirality inversions involving stacking transitions between intra-chain π-π stacking, inter-chain H- and J-aggregation. Furthermore, the length of the solvophilic PMAA also affects the morphology of the chiral supramolecular assemblies; rice grain-like micelles, worms, nanofibers, floccules, and lamellae can be prepared at different solvophilic-solvophobic balance. The comprehensive mechanism is collectively revealed by utilizing various measurement methods, such as including circular dichroism (CD), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). This study highlights the critical importance of fully dissolved solvophilic segments for the chiroptical regulation of the aggregated core, providing new insights into the arrangement of chiral supramolecular structures in polymer systems.
Collapse
Affiliation(s)
- Yuqing Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaying Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenyang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shengyu Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
3
|
Wang X, Yu Z, Huang Z, Zhou N, Cheng X, Zhang Z, Zhang W, Zhu X. Unraveling Dynamic Helicity Inversion and Chirality Transfer through the Synthesis of Discrete Azobenzene Oligomers by an Iterative Exponential Growth Strategy. Angew Chem Int Ed Engl 2023:e202315686. [PMID: 38085492 DOI: 10.1002/anie.202315686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.
Collapse
Affiliation(s)
- Xiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Zhao HY, Gou X, Pei YR, Jin LY. Chirality Amplification Over the Morphology Control of the Rod-Coil Molecules with Lateral Methyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37294904 DOI: 10.1021/acs.langmuir.3c00864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
In the context of sustainable development, research regarding chirality has aroused enormous attention. Concurrently, chiral self-assembly is one of the most important subjects in supramolecular research, which can broaden the applications of chiral materials. This study focuses on the morphology control of amphiphilic rod-coil molecules composed of the rigid hexaphenyl unit and flexible oligoethylene and butoxy groups containing lateral methyl groups, carried out using an enantioseparation application. The methyl side chain being located on different blocks influences the driving force through steric hindrance, which determines the direction and degree of tilted packing during the π-π stacking of the self-assembly process. Interestingly, the amphiphilic rod-coil molecules aggregated into long helical nano-fibers, which further hierarchically aggregated into nano-sheets or nano-tubes upon increasing the concentration of the THF/H2O solution. In particular, the hierarchical-chiral assembly effectively amplified the chirality and was validated by the strong Cotton signals; playing a vital role in the enantioselective nucleophilic substitution reaction. These results provide new insights into the applications of chiral self-assemblies and soft chiral materials.
Collapse
Affiliation(s)
- Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, People's Republic of China
| |
Collapse
|
5
|
Cheng X, Gan Y, Zhang G, Song Q, Zhang Z, Zhang W. Conformationally supramolecular chirality prevails over configurational point chirality in side-chain liquid crystalline polymers. Chem Sci 2023; 14:5116-5124. [PMID: 37206386 PMCID: PMC10189893 DOI: 10.1039/d3sc00975k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
In nature, the communication of primary amino acids in the polypeptides influences molecular-level packing, supramolecular chirality, and the resulting protein structures. In chiral side-chain liquid crystalline polymers (SCLCPs), however, the hierarchical chiral communication between supramolecular mesogens is still determined by the parent chiral source due to the intermolecular interactions. Herein, we present a novel strategy to enable the tunable chiral-to-chiral communication in azobenzene (Azo) SCLCPs, in which the chiroptical properties are not dominated by the configurational point chirality but by the conformationally supramolecular chirality that emerged. The communication of dyads biases supramolecular chirality with multiple packing preference, thereby overruling the configurational chirality of the stereocenter. The chiral communication mechanism between the side-chain mesogens is revealed through the systematic study of the chiral arrangement at the molecular level, including mesomorphic properties, stacking modes, chiroptical dynamics and further morphological dimensions.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Yijing Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Qingping Song
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
6
|
Li Q, Lu X, Lv Z, Zhu B, Lu Q. Full-Color and Switchable Circularly Polarized Light from a Macroscopic Chiral Dendritic Film through a Solid-State Supramolecular Assembly. ACS NANO 2022; 16:18863-18872. [PMID: 36346796 DOI: 10.1021/acsnano.2c07768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Chiral materials displaying chirality across multiple length scales have attracted increasing interest due to their potential applications in diverse fields. Herein, we report an efficient approach for the construction of macroscopic crystal dendrites with hierarchical chirality based on an in situ solid assembly in a block copolymer film. Chiral fluorescent crystals are formed by enantiopure d-/l-dibenzoyl tartaric acid and pyrenecarboxylic acid in a poly(1,4-butadiene)-b-poly(ethylene oxide) film. The chiro-optical activity of the crystalline dendrites can be greatly amplified in the absorption and scattering regions and goes along with the dimension of dendrites. Notably, the chiral dendrites exhibited strong circularly polarized luminescence emission with a high dissymmetric factor (0.03). The enhancement of the quantum yield of the chiral film was up to 28%, which was 14 times higher that of the corresponding fluorescent molecules. The circularly polarized emission bands of the films can be fine-tuned by contriving the emissive bands of fluorescent molecules. More importantly, the chiral signals are able to be wiped when the fluorescent group photodimerizes under UV irradiation. This work provides an efficient way to develop functional materials through solid self-assembly.
Collapse
Affiliation(s)
- Qingxiang Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Zhiguo Lv
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Bangshang Zhu
- Institute of Analytic Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| |
Collapse
|
7
|
Kumar G, Kumar M, Bhalla V. Controlling the Transition of Nanospheres to Superhelices in Aqueous Media by Using a “Smart” Pyrazine Building Block. Angew Chem Int Ed Engl 2022; 61:e202207416. [DOI: 10.1002/anie.202207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| | - Manoj Kumar
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| | - Vandana Bhalla
- Department of Chemistry UGC Centre of Advance Study-II Guru Nanak Dev University Amritsar 143005, Punjab India
| |
Collapse
|
8
|
Liu Z, Yao Y, Tao X, Wei J, Lin S. Helical supramolecular nanorods via sequential meticulous tailoring of noncovalent interaction and light irradiation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
|
9
|
Kumar G, Kumar M, Bhalla V. Controlling the Transition of Nanospheres to Superhelices in Aqueous Media by Using a ‘Smart’ Pyrazine Building Block. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Kumar
- Guru Nanak Dev University Department of Chemistry INDIA
| | - Manoj Kumar
- Guru Nanak Dev University Department of Chemistry INDIA
| | - Vandana Bhalla
- Guru Nanak Dev University, Amritsar Chemistry Assistant Professor, Department of Chemistry,Guru Nanak Dev University, AmritsarPunjab 143005 AMRITSAR INDIA
| |
Collapse
|
10
|
Zhang J, Li S, Yin Y, Xiang L, Xu F, Mai Y. One-Dimensional Helical Nanostructures from the Hierarchical Self-Assembly of an Achiral "Rod-Coil" Alternating Copolymer. Macromol Rapid Commun 2022; 43:e2200437. [PMID: 35726773 DOI: 10.1002/marc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of alternating copolymers (ACPs) has attracted considerable interest due to their unique alternating nature. However, compared with block copolymers, their self-assembly behavior has remained much less explored and their reported self-assembled structures are limited. Here, we report the formation of supramolecular helical structures by the self-assembly of an achiral rod-coil alternating copolymer, poly(quarter(3-hexylthiophene)-alt-poly(ethylene glycol)) (P(Q3HT-alt-PEG)). The copolymer exhibited an interesting hierarchical self-assembly process, driven by the π-π stacking of the Q3HT segments and the solvophobic interaction of the alkyl chains in tetrahydrofuran (THF)-isopropanol (iPrOH) mixed solvents. The copolymer first self-assembled into thin nanobelts with a uniform size, then grew to helical nanoribbons and eventually twisted into helical nanowires with an average diameter of 25 ± 9 nm and a mean pitch of 80 ± 10 nm. Dissipative particle dynamics (DPD) simulation supported the formation course of the helical nanowires. Furthermore, the addition of (S)-ethyl lactate and (R)-ethyl lactate in the self-assembly of P(Q3HT-alt-PEG) resulted in the formation of left-handed and right-handed chiral nanowires, respectively, demonstrating the tunability of the chirality of the helical wires. This study expands the library of ordered self-assembled structures of ACPs, and also brings a new strategy and mechanism to construct helical supramolecular structures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Wang J, Ji H, Guo Y, Wang B, Han X, Li L, Wu F, Li J, Lu C. Light-assisted anti-wrinkling on azobenzene-containing polyblend films. SOFT MATTER 2022; 18:4475-4482. [PMID: 35667386 DOI: 10.1039/d2sm00630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Undesired surface wrinkling is a persistent issue far from being resolved. Here, we report a simple light-assisted strategy to prevent surface wrinkling on azobenzene-containing polyblend films, which is based on the unique photo-responsive behaviors of azobenzene moieties. Upon visible light irradiation, the mechanical strain-induced surface wrinkling of the azo-based polyblend film attached on a pre-strained compliant substrate can be effectively suppressed. The influence of light irradiation conditions and polyblend composition on the wrinkling resistance has been systematically investigated. Notably, empirical scaling laws that can quantify the connection of the critical wrinkling conditions with external and internal factors are derived. This spatiotemporal light-assisted strategy combined with the simple universal blending method would provide a general guideline for the anti-wrinkling purpose in diverse functional material systems/devices.
Collapse
Affiliation(s)
- Juanjuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Haipeng Ji
- No. 46 Institute, China Aerospace Science and Industry Corporation Sixth Academy, Huhhot, 010010, China
| | - Yanqian Guo
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Bin Wang
- School of Science, Tianjin Chengjian University, Tianjin, 300384, China
| | - Xue Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Lele Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Fuqi Wu
- School of Science, Tianjin Chengjian University, Tianjin, 300384, China
| | - Jingqing Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Conghua Lu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China.
| |
Collapse
|
12
|
Otaki M, Goto H. Electrochromism of Main‐Chain Polyazobenzenes Synthesized in Liquid Crystal Template and Its Orientation Behavior. ChemistrySelect 2022. [DOI: 10.1002/slct.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Otaki
- Department of Materials Science Faculty of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8573 Japan
| | - H. Goto
- Department of Materials Science Faculty of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
13
|
Sun H, Zhou X, Leng Y, Li X, Du J. Transformation of Amorphous Nanobowls to Crystalline Ellipsoids Induced by Trans-Cis Isomerization of Azobenzene. Macromol Rapid Commun 2022; 43:e2200131. [PMID: 35322512 DOI: 10.1002/marc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
The stimuli-responsive transition of nanostructures from amorphous to crystalline state is of high interest in polymer science, but is still challenging. Herein, we demonstrate the transformation of amorphous nanobowls to crystalline ellipsoids triggered by UV induced trans-cis isomerization, using an azobenzene-containing amphiphilic homopolymer (PAzoAA) as building block. The amide bond and azobenzene pendants are introduced to the side chain of PAzoAA to afford hydrogen bonding and π-π interaction, which promotes the formation of nanobowls rather than spherical nanostructures. Upon exposed to UV irradiation, trans-cis isomerization of azobenzene pendants occurs, leading to the increase of hydrophilicity and destruction of π-π interaction, further resulting in the disassembly of the nanobowls. Then the PAzoAA re-assembles to form crystalline ellipsoids instead of amorphous nanostructures when recovered at 70°C without UV light. We further confirm that the high incubation temperature after UV irradiation is critical for the cis-trans transformation and the high mobility of the polymer chains to facilitate the regular rearrangement of azobenzene pendants. Overall, we propose a facile method to achieve the transformation of amorphous nanobowls to crystalline ellipsoids, which may bring new insight into preparation of crystalline nanoparticles using amorphous precursors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
14
|
Yuan J, Lu X, Zhang S, Zheng F, Deng Q, Han L, Lu Q. Molecular Chirality and Morphological Structural Chirality of Exogenous Chirality-Induced Liquid Crystalline Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songyang Zhang
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Quanzheng Deng
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Lu Han
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Qinghua Lu
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Cheng X, Miao T, Ma Y, Zhang W. Chiral Expression and Morphology Control in Polymer Dispersion Systems. Chempluschem 2022; 87:e202100556. [DOI: 10.1002/cplu.202100556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoxiao Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Tengfei Miao
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Yafei Ma
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Wei Zhang
- Soochow University Department of Polymer Science and Engineering No.199 Renai Road 215123 Suzhou CHINA
| |
Collapse
|