1
|
Cao Q, Fan HZ, Xie M, Cai Z, Zhu JB. Solubility-Equilibrium-Assisted Kinetic Resolution Polymerization toward Isotactic Polyesters Containing Axial Chirality. J Am Chem Soc 2025; 147:1147-1154. [PMID: 39680619 DOI: 10.1021/jacs.4c14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
High-level control over polymer stereochemistry leverages the fine-tuning of material properties, but it is still a formidable challenge in synthetic polymer chemistry. Herein we prepared a new class of salph yttrium catalysts bearing axially chiral binaphthyl moieties for axially stereocontrolled polymerization of rac-Me-DBO. (S)-Y3-bearing bulkier binaphthyl units accomplished moderate isoselectivity via kinetic resolution polymerization, affording P(Me-BDO) with a Pm of up to 0.80. Remarkably, exploiting the solubility equilibrium to maintain a constant for the concentration of two enantiopure monomer pairs in the solution state contributed to a boost in polymerization isoselectivity and furnished isotactic P(Me-DBO) products with a Pm of up to 0.93. Detailed mechanistic investigations supported our solubility-equilibrium shifting hypothesis. This solubility-equilibrium-assisted kinetic resolution polymerization strategy was expected to become a versatile platform to improve stereocontrol without de novo catalyst design.
Collapse
Affiliation(s)
- Qing Cao
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Hu C, Zhang Y, Pang X, Chen X. Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412185. [PMID: 39552002 DOI: 10.1002/adma.202412185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Poly(lactic acid) (PLA) is a representative biobased and biodegradable aliphatic polyester and a front-runner among sustainable materials. As a semicrystalline thermoplastic, PLA exhibits excellent mechanical and physical properties, attracting considerable attention in commodity and medical fields. Stereochemistry is a key factor affecting PLA's properties, and to this end, the engineering of PLA's microstructure for tailored material properties has been an active area of research over the decade. This Review first covers the basic structural variety of PLA. A perspective on the current states of stereocontrolled synthesis as well as the relationships between the structures and properties of PLA stereosequences are included, with an emphasis on record regularity and properties. At last, state-of-the-art examples of high-performance PLA-based materials within an array of applications are given, including packaging, fibers, and textiles, healthcare and electronic devices. Among various stereo-regular sequences of PLA, poly(L-lactic acid) (PLLA) is the most prominent category and has myriad unique properties and applications. In this regard, cutting-edge applications of PLLA are mainly overviewed in this review. At the same time, new materials developed based on other PLA stereosequences are highlighted, which holds the potential to a wide variety of PLA-based sustainable materials.
Collapse
Affiliation(s)
- Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Morodo R, Dumas DM, Zhang J, Lui KH, Hurst PJ, Bosio R, Campos LM, Park NH, Waymouth RM, Hedrick JL. Ring-Opening Polymerization of Cyclic Esters and Carbonates with (Thio)urea/Cyclopropenimine Organocatalytic Systems. ACS Macro Lett 2024:181-188. [PMID: 38252690 DOI: 10.1021/acsmacrolett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (Đ = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai H Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul J Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Riccardo Bosio
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
4
|
Liu J, Wang J, Li M, Tao Y. Gradient isoselective ring-opening polymerization of racemic cyclic diolide driven by chiral phosphoric acid catalysis. Polym Chem 2022. [DOI: 10.1039/d2py00955b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercially available binaphthol-derived chiral phosphoric acid organocatalysts were demonstrated to enable chemo- and stereoselective ROP of rac-cyclic diolide, yielding gradient isotactic multiblock poly(3-hydroxybutyrate) (P3HB).
Collapse
Affiliation(s)
- Junbao Liu
- China-Japan Union Hospital of Jilin University, Xiantai Street 126, Changchun 130000, People's Republic of China
| | - Jianqun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|