1
|
Perelman RT, Schmidt A, Khan U, Walter NG. Spontaneous Confinement of mRNA Molecules at Biomolecular Condensate Boundaries. Cells 2023; 12:2250. [PMID: 37759470 PMCID: PMC10526803 DOI: 10.3390/cells12182250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular biomolecular condensates, termed ribonucleoprotein (RNP) granules, are often enriched in messenger RNA (mRNA) molecules relative to the surrounding cytoplasm. Yet, the spatial localization and diffusion of mRNAs in close proximity to phase separated RNP granules are not well understood. In this study, we performed single-molecule fluorescence imaging experiments of mRNAs in live cells in the presence of two types of RNP granules, stress granules (SGs) and processing bodies (PBs), which are distinct in their molecular composition and function. We developed a photobleaching- and noise-corrected colocalization imaging algorithm that was employed to determine the accurate positions of individual mRNAs relative to the granule's boundaries. We found that mRNAs are often localized at granule boundaries, an observation consistent with recently published data. We suggest that mRNA molecules become spontaneously confined at the RNP granule boundary similar to the adsorption of polymer molecules at liquid-liquid interfaces, which is observed in various technological and biological processes. We also suggest that this confinement could be due to a combination of intermolecular interactions associated with, first, the screening of a portion of the RNP granule interface by the polymer and, second, electrostatic interactions due to a strong electric field induced by a Donnan potential generated across the thin interface.
Collapse
Affiliation(s)
- Rebecca T. Perelman
- Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA; (R.T.P.); (A.S.)
| | - Andreas Schmidt
- Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA; (R.T.P.); (A.S.)
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02115, USA;
| | - Nils G. Walter
- Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA; (R.T.P.); (A.S.)
- Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Shandiz SA, Leuty GM, Guo H, Mokarizadeh AH, Maia JM, Tsige M. Structure and Thermodynamics of Linear, Ring, and Catenane Polymers in Solutions and at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7154-7166. [PMID: 37155243 DOI: 10.1021/acs.langmuir.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent decades, advances in the syntheses of mechanically interlocked macromolecules, such as catenanes, have led to much greater interest in the applications of these complexes, from molecular motors and actuators to nanoscale computational memory and nanoswitches. Much remains to be understood, however, regarding how catenated ring compounds behave as a result of the effects of different solvents as well as the effects of solvent/solvent interfaces. In this work, we have investigated, using molecular dynamics simulations, the effects of solvation of poly(ethylene oxide) chains of different topologies─linear, ring, and [2]catenane─in two solvents both considered favorable toward PEO (water, toluene) and at the water/toluene interface. Compared to ring and [2]catenane molecules, the linear PEO chain showed the largest increase in size at the water/toluene interface compared to bulk water or bulk toluene. Perhaps surprisingly, observations indicate that the tendency of all three topologies to extend at the water/toluene interface may have more to do with screening the interaction between the two solvents than with optimizing specific solvent-polymer contacts.
Collapse
Affiliation(s)
- Saeed Akbari Shandiz
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Gary M Leuty
- LinQuest Corporation, Beavercreek, Ohio 45431, United States
| | - Hao Guo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joao M Maia
- Department of Macromolecular Science & Engineering, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
3
|
Panoukidou M, Wand CR, Carbone P. Comparison of equilibrium techniques for the viscosity calculation from DPD simulations. SOFT MATTER 2021; 17:8343-8353. [PMID: 34550156 DOI: 10.1039/d1sm00891a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissipative Particle Dynamics (DPD) is a powerful mesoscopic modelling technique that is routinely used to predict complex fluid morphology and structural properties. While its ability to quickly scan the conformational space is well known, it is unclear if DPD can correctly calculate the viscosity of complex fluids. In this work, we estimate the viscosity of several unentangled polymer solutions using both the Einstein and Green-Kubo formulas. For this purpose, an Einstein relation is derived analogous to the revised Green-Kubo formula suggested by Jung and Schmid, J. Chem. Phys., 2016, 144, 204104. We show that the DPD simulations reproduce the dynamical behaviour predicted by the theory irrespectively of the values of the conservative and friction parameters used and estimate a Schmidt number compatible to that of a fluid system. Moreover, we observe that the Einstein method requires shorter trajectories to achieve the same statistical accuracy as the Green-Kubo formula. This work shows that DPD can confidently be used to calculate the viscosity of complex fluids and that the statistical accuracy of short trajectories can be improved by using our revised Einstein formula.
Collapse
Affiliation(s)
- Maria Panoukidou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK.
| | - Charlie R Wand
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK.
| | - Paola Carbone
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Kuttich B, Hoffmann I, Stühn B. Disentangling of complex polymer dynamics under soft nanoscopic confinement. SOFT MATTER 2020; 16:10377-10385. [PMID: 33057543 DOI: 10.1039/d0sm01058h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss the complex interplay between host and guest dynamics for a polymer in soft confinement by a droplet-phase microemulsion. Intermediate scattering functions obtained by neutron spin echo spectroscopy are first analysed by means of an effective diffusion coefficient. From its dependence on the absolute of the scattering vector q we concluded a sophisticated model for the systems dynamics taking both polymer and microemulsion contributions into account. Global fitting of this model to the intermediate scattering functions at all measured q-values and all investigated confinement sizes eventually allows for a precise disentangling of the pure polymer dynamics in confinement from the overlaying microemulsion dynamics. Validity of our approach is further supported by numerical random walk calculations.
Collapse
Affiliation(s)
- Björn Kuttich
- Experimental Condensed Matter Physics, TU Darmstadt, Germany
| | | | | |
Collapse
|
5
|
Lavino AD, Carbone P, Marchisio D. MARTINI
coarse‐grained model for poly‐ε‐caprolactone in acetone‐water mixtures. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alessio D. Lavino
- Department of Applied Science and TechnologyPolitecnico di Torino Torino Italy
| | - Paola Carbone
- School of Chemical Engineering & Analytical ScienceThe University of Manchester Manchester UK
| | - Daniele Marchisio
- Department of Applied Science and TechnologyPolitecnico di Torino Torino Italy
| |
Collapse
|
6
|
Giunta G, Carbone P. Cross-over in the dynamics of polymer confined between two liquids of different viscosity. Interface Focus 2019; 9:20180074. [PMID: 31065342 PMCID: PMC6501349 DOI: 10.1098/rsfs.2018.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 11/12/2022] Open
Abstract
Using molecular dynamics simulations, we analysed the polymer dynamics of chains of different molecular weights entrapped at the interface between two immiscible liquids. We showed that on increasing the viscosity of one of the two liquids the dynamic behaviour of the chain changes from a Zimm-like dynamics typical of dilute polymer solutions to a Rouse-like dynamics where hydrodynamic interactions are screened. We observed that when the polymer is in contact with a high viscosity liquid, the number of solvent molecules close to the polymer beads is reduced and ascribed the screening effect to this reduced number of polymer-solvent contacts. For the longest chain simulated, we calculated the distribution of loop length and compared the results with the theoretical distribution developed for solid/liquid interfaces. We showed that the polymer tends to form loops (although flat against the interface) and that the theory works reasonably well also for liquid/liquid interfaces.
Collapse
Affiliation(s)
- Giuliana Giunta
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Taddese T, Carbone P. Effect of Chain Length on the Partition Properties of Poly(ethylene oxide): Comparison between MARTINI Coarse-Grained and Atomistic Models. J Phys Chem B 2017; 121:1601-1609. [PMID: 28151665 DOI: 10.1021/acs.jpcb.6b10858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MARTINI coarse-grained beads are parameterized to match the partition coefficients of several organic molecules in different solvents. Here, we test the method when modeling the partitioning properties of poly(ethylene oxide) between solvents of different polarities. We show that, among the existing models, the latest model developed by Lee and co-workers [ Lee , H. ; Pastor , R. W. J. Phys. Chem. B 2011 , 115 , 7830 - 7837 ] is the one that most successfully reproduces the hydration free energy of short oligomers, although it predicts highly negative solvation free energies in octanol and hexane. We develop a new CG model matching the solvation free energy of the monomer in different solvents and propose a simple method to select the Lennard-Jones parameters that reproduce the desired partition coefficients. The model correctly reproduces water/hexane partition properties for oligomers up to 10 monomers but still suffers from a transferability problem for larger molecular weight.
Collapse
Affiliation(s)
- Tseden Taddese
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| | - Paola Carbone
- School of Chemical Engineering and Analytical Science, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
8
|
Glagoleva AA, Vasilevskaya VV, Khokhlov AR. Polymer globule with fractal properties caused by intramolecular nanostructuring and spatial constrains. SOFT MATTER 2016; 12:5138-5145. [PMID: 27198966 DOI: 10.1039/c6sm00747c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By means of computer simulation, we studied macromolecules composed of N dumbbell amphiphilic monomer units with attractive pendant groups. In poor solvents, these macromolecules form spherical globules that are dense in the case of short chains (the gyration radius RG∼N(1/3)), or hollow inside and obey the RG∼N(1/2) law when the macromolecules are sufficiently long. Due to the specific intramolecular nanostructuring, the vesicle-like globules of long amphiphilic macromolecules posses some properties of fractal globules, by which they (i) could demonstrate the same scaling statistics for the entire macromolecule and for short subchains with m monomer units and (ii) possess a specific territorial structure. Within a narrow slit, the globule loses its inner cavity, takes a disk-like shape and scales as N(1/2) for much shorter macromolecules. However, the field of end-to-end distance r(m) ∼m(1/2) dependence for subchains becomes visibly smaller. The results obtained were compared with the homopolymer case.
Collapse
Affiliation(s)
- Anna A Glagoleva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russia.
| | | | | |
Collapse
|