1
|
Verstreken MFK, Chanut N, Magnin Y, Landa HOR, Denayer JFM, Baron GV, Ameloot R. Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. J Am Chem Soc 2024; 146:23633-23648. [PMID: 39162369 DOI: 10.1021/jacs.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adsorptive separations by nanoporous materials are major industrial processes. The industrial importance of solid adsorbents is only expected to grow due to the increased focus on carbon dioxide capture technology and energy-efficient separations. To evaluate the performance of an adsorbent and design a separation process, the adsorption thermodynamics and kinetics must be known. However, although diffusion kinetics determine the maximum production rate in any adsorption-based separation, this aspect has received less attention due to the challenges associated with conducting diffusion measurements. These challenges are exacerbated in the study of shaped adsorbents due to the presence of porosity at different length scales. As a result, adsorbent selection typically relies mainly on adsorption properties at equilibrium, i.e., uptake capacity, selectivity and adsorption enthalpy. In this Perspective, based on an extensive literature review on mass transfer of CO2 in nanoporous adsorbents, we discuss the importance and limitations of measuring diffusion in nanoporous materials, from the powder form to the adsorption bed, considering the nature of the process, i.e., equilibrium-based or kinetic-based separations. By highlighting the lack of and discrepancies between published diffusivity data in the context of CO2 capture, we discuss future challenges and opportunities in studying mass transfer across scales in adsorption-based separations.
Collapse
Affiliation(s)
- Margot F K Verstreken
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nicolas Chanut
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yann Magnin
- TotalEnergies, OneTech, R&D, CSTJF, Pau 64800, France
| | - Héctor Octavio Rubiera Landa
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering & Industrial Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Elsene, B-1050, Brussels, Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Liu H, Lin H, Dai S, Jiang DE. Minimal Kinetic Model of Direct Air Capture of CO 2 by Supported Amine Sorbents in Dry and Humid Conditions. Ind Eng Chem Res 2024; 63:5871-5879. [PMID: 38586216 PMCID: PMC10995953 DOI: 10.1021/acs.iecr.3c04535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Dilute concentration (∼400 ppm) and humidity are two important factors in the direct air capture (DAC) of CO2 by supported sorbents. In this work, a minimal DAC CO2 adsorption-kinetics model was formulated for supported amine sorbents under dry and humid conditions. Our model fits well with a recent DAC experiment with supported amine sorbent in both dry and humid conditions. Temperature and flow rate effects on breakthrough curves were quantitatively captured, and increasing temperature led to faster CO2 adsorption kinetics. Moisture was shown to broaden the breakthrough curve with slower CO2 adsorption kinetics but significantly improve the uptake capacity. The present minimal model provides a versatile platform for kinetic modeling of the DAC of CO2 on supported amine and other chemisorption systems.
Collapse
Affiliation(s)
- Hongjun Liu
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hongfei Lin
- The
Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Sheng Dai
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - De-en Jiang
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Gogoi A, Barman H, Mandal S, Seth S. Removal of dyes using polymers of intrinsic microporosity (PIMs): a recent approach. Chem Commun (Camb) 2023; 59:12799-12812. [PMID: 37815313 DOI: 10.1039/d3cc03248e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Removal of dyes from various industrial effluents is a great challenge, and cost-effective methods and materials with high dye removal efficacy are in high demand. Adsorption, nanofiltration and photocatalytic degradation are three major techniques that have been investigated for dye removal. PIMs are promising materials for use in these three methods based on their attributes, such as microporosity, solution processibility, high chemical stability and tunability through facile synthesis and easy postmodification. Although the number of reports on dye removal employing PIMs are limited, some of the materials have been shown to exhibit good dye separation properties, which are comparable to those of the state-of-the-art material activated carbon. In this highlight, we make an account of progress in PIMs and PIM-based composite materials in different dye removal processes over the last decade. Furthermore, we discuss the existing challenges of PIM-based materials and aim to analyze the key parameters for improving their dye removal properties.
Collapse
Affiliation(s)
- Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Tezpur-784028, India.
| | - Hima Barman
- Department of Applied Sciences, Tezpur University, Tezpur-784028, India.
| | - Susovan Mandal
- Department of Chemistry, Jhargram Raj College, Jhargram-721507, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Tezpur-784028, India.
| |
Collapse
|
4
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
5
|
Wongwilawan S, Nguyen TS, Nguyen TPN, Alhaji A, Lim W, Hong Y, Park JS, Atilhan M, Kim BJ, Eddaoudi M, Yavuz CT. Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity. Nat Commun 2023; 14:2096. [PMID: 37055400 PMCID: PMC10102017 DOI: 10.1038/s41467-023-37743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical modifications of porous materials almost always result in loss of structural integrity, porosity, solubility, or stability. Previous attempts, so far, have not allowed any promising trend to unravel, perhaps because of the complexity of porous network frameworks. But the soluble porous polymers, the polymers of intrinsic microporosity, provide an excellent platform to develop a universal strategy for effective modification of functional groups for current demands in advanced applications. Here, we report complete transformation of PIM-1 nitriles into four previously inaccessible functional groups - ketones, alcohols, imines, and hydrazones - in a single step using volatile reagents and through a counter-intuitive non-solvent approach that enables surface area preservation. The modifications are simple, scalable, reproducible, and give record surface areas for modified PIM-1s despite at times having to pass up to two consecutive post-synthetic transformations. This unconventional dual-mode strategy offers valuable directions for chemical modification of porous materials.
Collapse
Affiliation(s)
- Sirinapa Wongwilawan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- PTT Global Chemical Public Company Limited, Bangkok, 10900, Thailand
| | - Thien S Nguyen
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
| | - Thi Phuong Nga Nguyen
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abdulhadi Alhaji
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
| | - Wonki Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeongran Hong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mert Atilhan
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008-5462, USA
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mohamed Eddaoudi
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
- Advanced Membranes & Porous Materials Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia.
- KAUST Catalysis Center, PSE, KAUST, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
6
|
Mohsenpour S, Guo Z, Almansour F, Holmes SM, Budd PM, Gorgojo P. Porous silica nanosheets in PIM-1 membranes for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Mohsenpour S, Ameen AW, Leaper S, Skuse C, Almansour F, Budd PM, Gorgojo P. PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
DeWitt SJA, Lively RP. MIL-101(Cr) Polymeric Fiber Adsorbents for Sub-Ambient Post-Combustion CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ryan P. Lively
- Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
9
|
Kim K, Hwang YE, Lee YH, Park SJ, Kim D, Koh DY. All-Nanoporous fiber sorbent with a Non-Sacrificial polymer of intrinsic microporosity (PIM) matrix. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
A Comparative Study of Different Sorbents in the Context of Direct Air Capture (DAC): Evaluation of Key Performance Indicators and Comparisons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Direct air capture can be based on an adsorption system, and the used sorbent (chemisorbents or physisorbents) influences process. In this work, two amine-functionalized sorbents, as chemisorbents, and three different metal organic frameworks, as physisorbents, are considered and compared in terms of some key performance indicators. This was carried out by developing a mathematical model describing the adsorption and desorption stages. An independent analysis was carried out in order to verify data reported in the literature. Results show that the equilibrium loading is a critical parameter for adsorption capacity, energy consumption, and cost. The considered metal organic frameworks are characterized by a lower equilibrium loading (10−4 mol/kg) compared to chemisorbents (10−1 mol/kg). For this reason, physisorbents have higher overall energy consumptions and costs, while capturing a lower amount of carbon dioxide. A reasonable agreement is found on the basis of the operating conditions of the Climeworks company, modelling the use of the same amine cellulose-based sorbent. The same order of magnitude is found for total costs (751 USD/tonneCO2 for our analysis, compared to the value of 600 USD/tonneCO2 proposed by this company).
Collapse
|
11
|
Shingdilwar S, Dolui S, Banerjee S. Facile Fabrication of Functional Mesoporous Polymer Nanospheres for CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Subrata Dolui
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
12
|
Shingdilwar S, Kumar D, Sahu B, Banerjee S. Straightforward synthesis of multifunctional porous polymer nanomaterials for CO 2 capture and removal of contaminants. Polym Chem 2022. [DOI: 10.1039/d2py00067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of multifunctional mesoporous polymer nanomaterials suitable for the removal of contaminants and CO2 capture is reported.
Collapse
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Bhanendra Sahu
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
13
|
|
14
|
Quan W, Zhang F, Hamlett BL, Finn MG, Abney CW, Weston SC, Lively RP, Koros WJ. CO 2 Capture Using PIM-1 Hollow Fiber Sorbents with Enhanced Performance by PEI Infusion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenying Quan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 301 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Fengyi Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 301 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Breanne L. Hamlett
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - M. G. Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Carter W. Abney
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Simon C. Weston
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Ryan P. Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 301 Ferst Drive, Atlanta, Georgia 30332, United States
| | - William J. Koros
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 301 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Wang S, Wu J, Ma N, Chen S. High molecular weight polyethylenimine encapsulated into a porous polymer monolithic by one-step polymerization for CO 2 capture. NEW J CHEM 2021. [DOI: 10.1039/d1nj01288f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low-cost porous polymer monolithic with a well-interconnected 3D structure and high amino efficiency for CO2 capture.
Collapse
Affiliation(s)
- Shuoyu Wang
- PCFM Lab
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jingjie Wu
- PCFM Lab
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Nianfang Ma
- Institute of Bioengineering
- Guangdong Academy of Sciences
- Guangdong Provincial Engineering Technology Research Center of Biomaterials
- Guangzhou 510316
- China
| | - Shuixia Chen
- PCFM Lab
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
16
|
Ahmad MZ, Castro-Muñoz R, Budd PM. Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. NANOSCALE 2020; 12:23333-23370. [PMID: 33210671 DOI: 10.1039/d0nr07042d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.
Collapse
Affiliation(s)
- Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, M13 9PL, UK.
| | | | | |
Collapse
|
17
|
Sekizkardes AK, Hammache S, Hoffman JS, Hopkinson D. Polymers of Intrinsic Microporosity Chemical Sorbents Utilizing Primary Amine Appendance Through Acid-Base and Hydrogen-Bonding Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30987-30991. [PMID: 31368688 DOI: 10.1021/acsami.9b09856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we present novel chemical sorbents based on polymers with intrinsic microporosity (PIMs). For the first time, alkylamines were incorporated in PIMs through an acid-base interaction to create a chemisorbent. The amine-appended PIMs not only showed a nearly four-fold enhancement in CO2 loading capacity (36.4 cc/g at 0.15 bar and 298 K) and very high CO2/N2 selectivity compared to neat PIM-1 but also proved to have stable performance when cycled between adsorption and desorption isotherms under both dry and humid conditions that are typical for postcombustion CO2 capture.
Collapse
Affiliation(s)
- Ali K Sekizkardes
- National Energy Technology Laboratory , 626 Cochrans Mill Road , P.O. Box 10940, Pittsburgh , Pennsylvania 15236-0940 , United States
- Leidos Research Support Team , 626 Cochrans Mill Road , P.O. Box 10940, Pittsburgh , Pennsylvania 15236-0940 , United States
| | - Sonia Hammache
- National Energy Technology Laboratory , 626 Cochrans Mill Road , P.O. Box 10940, Pittsburgh , Pennsylvania 15236-0940 , United States
- Leidos Research Support Team , 626 Cochrans Mill Road , P.O. Box 10940, Pittsburgh , Pennsylvania 15236-0940 , United States
| | - James S Hoffman
- National Energy Technology Laboratory , 626 Cochrans Mill Road , P.O. Box 10940, Pittsburgh , Pennsylvania 15236-0940 , United States
| | - David Hopkinson
- National Energy Technology Laboratory , 626 Cochrans Mill Road , P.O. Box 10940, Pittsburgh , Pennsylvania 15236-0940 , United States
| |
Collapse
|
18
|
Kirk RA, Putintseva M, Volkov A, Budd PM. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0018-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Minelli M, Pimentel BR, Jue ML, Lively RP, Sarti GC. Analysis and utilization of cryogenic sorption isotherms for high free volume glassy polymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Huang K, Liu F, Fan JP, Dai S. Open and Hierarchical Carbon Framework with Ultralarge Pore Volume for Efficient Capture of Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36961-36968. [PMID: 30256083 DOI: 10.1021/acsami.8b12182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amine-impregnated adsorbents are promising candidates for the selective capture of CO2 from flue gas. The key is to develop suitable supports possessing large pore sizes and very large pore volumes, and the material has to be facilely synthesized from readily available reagents. In this work, hierarchical carbon nanosheet (CNS) featuring large pore width (30-100 nm) and extraordinarily huge pore volume (8.41 cm3/g) was prepared through controlled carbonization of glucose and dicyandiamide. The CNS was physically impregnated with pentaethylenehexamine (PEHA) to act as adsorbents for selective capture of CO2. Owing to the unique porosity of CNS, the amount of amine loading in CNS can be ultrahigh (6 g PEHA/g CNS) in comparison with those of known amine-impregnated adsorbents, and the CO2 capacity in a flow of 15 v/v % of CO2 balanced in N2 was up to 5.0 mmol/g at 75 °C. The synthesized PEHA-CNS composite materials perform well in capturing CO2 under humid condition and display good stability in a test of 10 adsorption-desorption cycles. It is believed that the CNS synthesized in this work has great potential to act as a support material for CO2 adsorption.
Collapse
Affiliation(s)
- Kuan Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Fujian Liu
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering , Fuzhou University , Fuzhou , Fujian 350016 , China
| | - Jie-Ping Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering , Nanchang University , Nanchang , Jiangxi 330031 , China
| | - Sheng Dai
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
21
|
Chuah CY, Goh K, Yang Y, Gong H, Li W, Karahan HE, Guiver MD, Wang R, Bae TH. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chem Rev 2018; 118:8655-8769. [DOI: 10.1021/acs.chemrev.8b00091] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chong Yang Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunli Goh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yanqin Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Heqing Gong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wen Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - H. Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Michael D. Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 649798, Singapore
| | - Tae-Hyun Bae
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
22
|
Pang SH, Lively RP, Jones CW. Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO 2 Capture from Ultradilute Streams. CHEMSUSCHEM 2018; 11:2628-2637. [PMID: 29809307 DOI: 10.1002/cssc.201800438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Aminopolymer-based solid sorbents have been widely investigated for the capture of CO2 from dilute streams such as flue gas or ambient air. However, the oxidative stability of the widely studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here, we demonstrate the use of linear poly(propylenimine) (PPI), synthesized through a simple cationic ring-opening polymerization, as a more oxidatively stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites was investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the tradeoff between adsorption capacity and sorption-site accessibility, which was expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites were more efficient at CO2 capture and retained 65-83 % of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40 % retention for linear PEI. Additionally, we demonstrated long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving the oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable solid adsorbents in commercial applications for CO2 capture.
Collapse
Affiliation(s)
- Simon H Pang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
23
|
Peng HL, Zhong FY, Zhang JB, Zhang JY, Wu PK, Huang K, Fan JP, Jiang LL. Graphitic Carbon Nitride Functionalized with Polyethylenimine for Highly Effective Capture of Carbon Dioxide. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hai-Long Peng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fu-Yu Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jian-Bo Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jia-Yin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ping-Keng Wu
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Kuan Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jie-Ping Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Li-Long Jiang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
24
|
Zhang F, Ma Y, Liao J, Breedveld V, Lively RP. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity. Macromol Rapid Commun 2018; 39:e1800274. [PMID: 29806243 DOI: 10.1002/marc.201800274] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Fengyi Zhang
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Yao Ma
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Jianshan Liao
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Victor Breedveld
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Ryan P. Lively
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| |
Collapse
|
25
|
Hu Z, Wang Y, Wang X, Zhai L, Zhao D. Solution-reprocessable microporous polymeric adsorbents for carbon dioxide capture. AIChE J 2018. [DOI: 10.1002/aic.16181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhigang Hu
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4, 117585 Singapore
| | - Yuxiang Wang
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4, 117585 Singapore
| | - Xuerui Wang
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4, 117585 Singapore
| | - Linzhi Zhai
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4, 117585 Singapore
| | - Dan Zhao
- Dept. of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
26
|
Sato H, Nakajo S, Oishi Y, Shibasaki Y. Synthesis of linear polymer of intrinsic microporosity from 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane and decafluorobiphenyl. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
DeWitt SJA, Sinha A, Kalyanaraman J, Zhang F, Realff MJ, Lively RP. Critical Comparison of Structured Contactors for Adsorption-Based Gas Separations. Annu Rev Chem Biomol Eng 2018; 9:129-152. [PMID: 29579401 DOI: 10.1146/annurev-chembioeng-060817-084120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in adsorptive gas separations have focused on the development of porous materials with high operating capacity and selectivity, useful parameters that provide early guidance during the development of new materials. Although this material-focused work is necessary to advance the state of the art in adsorption science and engineering, a substantial problem remains: how to integrate these materials into a fixed bed to efficiently utilize the separation. Structured sorbent contactors can help manage kinetic and engineering factors associated with the separation, including pressure drop, sorption enthalpy effects, and external heat integration (for temperature swing adsorption, or TSA). In this review, we discuss monoliths and fiber sorbents as the two main classes of structured sorbent contactors; recent developments in their manufacture; advantages and disadvantages of each structure relative to each other and to pellet packed beds; recent developments in system modeling; and finally, critical needs in this area of research.
Collapse
Affiliation(s)
- Stephen J A DeWitt
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; , , , , ,
| | - Anshuman Sinha
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; , , , , ,
| | - Jayashree Kalyanaraman
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; , , , , ,
| | - Fengyi Zhang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; , , , , ,
| | - Matthew J Realff
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; , , , , ,
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; , , , , ,
| |
Collapse
|
28
|
Song Z, Dong Q, Xu WL, Zhou F, Liang X, Yu M. Molecular Layer Deposition-Modified 5A Zeolite for Highly Efficient CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:769-775. [PMID: 29239167 DOI: 10.1021/acsami.7b16574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Effective pore mouth size of 5A zeolite was engineered by depositing an ultrathin layer of microporous TiO2 on its external surface and appropriate pore misalignment at the interface. As a result, a slightly bigger N2 molecule (kinetic diameter: 0.364 nm) was effectively excluded, whereas CO2 (kinetic diameter: 0.33 nm) adsorption was only influenced slightly. The prepared composite zeolite sorbents showed an ideal CO2/N2 adsorption selectivity as high as ∼70, a 4-fold increase over uncoated zeolite sorbents, while maintaining a high CO2 adsorption capacity (1.62 mmol/g at 0.5 bar and 25 °C) and a fast CO2 adsorption rate.
Collapse
Affiliation(s)
- Zhuonan Song
- Department of Chemical Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Qiaobei Dong
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Weiwei L Xu
- Department of Chemical Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Fanglei Zhou
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Xinhua Liang
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology , Rolla, Missouri 65409, United States
| | - Miao Yu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
29
|
|
30
|
Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Wang C, Yang L, Chang G. Microporous coordination polymer with secondary amine functional groups for CO2 uptake and selectivity. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1390-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Church TL, Jasso-Salcedo AB, Björnerbäck F, Hedin N. Sustainability of microporous polymers and their applications. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9068-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
|
34
|
Wang X, Liu Y, Ma X, Das SK, Ostwal M, Gadwal I, Yao K, Dong X, Han Y, Pinnau I, Huang KW, Lai Z. Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605826. [PMID: 28112454 DOI: 10.1002/adma.201605826] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/25/2016] [Indexed: 06/06/2023]
Abstract
A soluble polymer with intrinsic microporosity, 2,4-diamino-1,3,5-triazine-functionalized organic polymer, is used for the first time as a solid adsorbent, providing an easy solution to overcome the fouling issue. Promising adsorption performances including good CO2 adsorption capacity, excellent CO2 /N2 and CO2 /CH4 selectivities, high chemical and thermal stabilities, and easiness of preparation and regeneration are shown.
Collapse
Affiliation(s)
- Xinbo Wang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yang Liu
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xiaohua Ma
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Swapan K Das
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mayur Ostwal
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ikhlas Gadwal
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kexin Yao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xinglong Dong
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yu Han
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ingo Pinnau
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Sayari A, Liu Q, Mishra P. Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine. CHEMSUSCHEM 2016; 9:2796-2803. [PMID: 27628575 DOI: 10.1002/cssc.201600834] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/22/2016] [Indexed: 05/26/2023]
Abstract
Until recently, carbon capture and sequestration (CCS) was regarded as the most promising technology to address the alarming increase in the concentration of anthropogenic CO2 in the atmosphere. There is now an increasing interest in carbon capture and utilization (CCU). In this context, the capture of CO2 from air is an ideal solution to supply pure CO2 wherever it is needed. Here, we describe innovative materials for direct air capture (DAC) with unprecedented efficiency. Polyethylenimine (PEI) was supported on PME, which is an extra-large-pore silica (pore-expanded MCM-41) with its internal surfaces fully covered by a uniform layer of readily accessible C16 chains from cetyltrimethylammonium (CTMA+ ) cations. The CTMA+ layer plays a key role in enhancing the amine efficiency toward dry or humid ultradilute CO2 (400 ppm CO2 /N2 ) to unprecedented levels. At the same PEI content, the amine efficiency of PEI/PME was two to four times higher than that of the corresponding calcined mesoporous silica loaded with PEI or with different combinations of C16 chains and PEI. Under humid conditions, the amine efficiency of 40 wt % PEI/PME reached 7.31 mmolCO2 /gPEI , the highest ever reported for any supported PEI in the presence of 400 ppm CO2 . Thus, amine accessibility, which reflects both the state of PEI dispersion and the adsorption efficiency, is intimately associated with the molecular design of the adsorbent.
Collapse
Affiliation(s)
- Abdelhamid Sayari
- Department of Chemistry, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Qing Liu
- Department of Chemistry, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Prashant Mishra
- Department of Chemistry, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
36
|
Chang G, Yang L, Yang J, Huang Y, Cao K, Ma J, Wang D. A nitrogen-rich, azaindole-based microporous organic network: synergistic effect of local dipole–π and dipole–quadrupole interactions on carbon dioxide uptake. Polym Chem 2016. [DOI: 10.1039/c6py01154c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of microporous organic polymer with azaindole units (N-PEINK) has been designed.
Collapse
Affiliation(s)
- Guanjun Chang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Li Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Junxiao Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Yawen Huang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Ke Cao
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Material Science and Engineering
- Southwest University of Science and Technology
- Mianyang
- P. R. China
| | - Jiajun Ma
- CAS Key Laboratory of Soft Matter Chemistry and Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Dapeng Wang
- Department of Chemical and Biological Engineering
- University of Colorado Boulder
- Boulder
- USA
| |
Collapse
|