1
|
Yu W, Yang Z, Yu C, Li X, Yuan L. Hydrogen-bonded macrocycle-mediated dimerization for orthogonal supramolecular polymerization. Beilstein J Org Chem 2025; 21:179-188. [PMID: 39834893 PMCID: PMC11744735 DOI: 10.3762/bjoc.21.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers. The macrocycle-mediated connectivity was confirmed by single-crystal X-ray diffraction, which revealed a unique 2:2 binding motif between host and guest, bridged by two cationic pyridinium end groups through π-stacking interactions and other cooperative intermolecular forces. Zinc ion-induced coordination with the macrocycle and a terpyridinium derivative enabled orthogonal polymerization, as revealed by 1H NMR, DLS, and TEM techniques. In addition, viscosity measurements showed a transition from oligomers to polymers at the critical polymerization concentration of 17 μM. These polymers were highly concentration-dependent. Establishing this new dimerization motif with shape-persistent H-bonded macrocycles widens the scope of noncovalent building blocks for supramolecular polymers and augurs well for the future development of functional materials.
Collapse
Affiliation(s)
- Wentao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyao Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chengkan Yu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaowei Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Yan M, Bao Y, Li S, Liao S, Yin S. Thermal-Sensitive Supramolecular Coordination Complex Formed by Orthogonal Metal Coordination and Host-Guest Interactions for an Electrical Thermometer. ACS Macro Lett 2024; 13:834-840. [PMID: 38913020 DOI: 10.1021/acsmacrolett.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Supramolecular coordination complexes (SCCs) are popular for their structural diversity and functional adaptability, which make them suitable for a wide range of applications. Photophysical and mechanical performance of SCCs are the most attractive characteristics, yet their ionically conductive behavior and potential in electrical sensing have been rarely investigated. This study reports a well-designed SCC that integrates orthogonal metal coordination and host-guest interactions to achieve sensitive electrical thermal sensing. Owing to the thermodynamic nature of the host-guest interaction, the SCC encounters thermally induced disassembly, leading to significantly enhanced ion mobility and thus allowing for the precise detection of minor temperature variation. The SCC-based thermometer is then fabricated with the assistance of 3D printing and demonstrates good accuracy and reliability in monitoring human skin temperature and real-time temperature changes of mouse during the whole anesthesia and recovery process. Our findings provide an innovative strategy for developing electrical thermometers and expand the current application scope of SCCs in electrical sensing.
Collapse
Affiliation(s)
- Miaomiao Yan
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yinglong Bao
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Sen Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shenglong Liao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
3
|
Chen L, You W, Wang J, Yang X, Xiao D, Zhu H, Zhang Y, Li G, Yu W, Sessler JL, Huang F. Enhancing the Toughness and Strength of Polymers Using Mechanically Interlocked Hydrogen Bonds. J Am Chem Soc 2024; 146:1109-1121. [PMID: 38141046 DOI: 10.1021/jacs.3c12404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The energy dissipative features of hydrogen bonds under conditions of mechanical strain have provided an ongoing incentive to explore hydrogen bonding units for the purpose of controlling and customizing the mechanical properties of polymeric materials. However, there remains a need for hydrogen bond units that (1) possess directionality, (2) provide selectivity, (3) dissipate energy effectively, and (4) can be incorporated readily into polymeric materials to regulate their mechanical properties. Here, we report mechanically interlocked hydrogen bond units that incorporate multiple hydrogen bonds within a [2]catenane structure. The conformational flexibility and associated spatial folding characteristics of the [2]catenane units allow for molecular scale motion under external stress, while the interlocked structure serves as a pivot that maintains the directionality and selectivity of the resultant hydrogen bonding units. When incorporated into polymers, these interlocked hydrogen bond motifs serve to strengthen and toughen the resulting materials. This study not only presents a novel hydrogen bond unit for creating polymeric materials with improved mechanical properties but also underscores the unique opportunities that mechanically interlocked hydrogen bond structures may provide across a diverse range of applications.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Wei You
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xue Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Huangtianzhi Zhu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yifei Zhang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
4
|
Ortiz-Ortiz DN, Mokarizadeh AH, Segal M, Dang F, Zafari M, Tsige M, Joy A. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters. Biomacromolecules 2023; 24:5091-5104. [PMID: 37882707 DOI: 10.1021/acs.biomac.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity.
Collapse
Affiliation(s)
- Deliris N Ortiz-Ortiz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Maddison Segal
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Li Z, Chen M, Chen Z, Zhu YL, Guo C, Wang H, Qin Y, Fang F, Wang D, Su C, He C, Yu X, Lu ZY, Li X. Non-equilibrium Nanoassemblies Constructed by Confined Coordination on a Polymer Chain. J Am Chem Soc 2022; 144:22651-22661. [PMID: 36411055 DOI: 10.1021/jacs.2c09726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biological systems employ non-equilibrium self-assembly to create ordered nanoarchitectures with sophisticated functions. However, it is challenging to construct artificial non-equilibrium nanoassemblies due to lack of control over assembly dynamics and kinetics. Herein, we design a series of linear polymers with different side groups for further coordination-driven self-assembly based on shape-complementarity. Such a design introduces a main-chain confinement which effectively slows down the assembly process of side groups, thus allowing us to monitor the real-time evolution of lychee-like nanostructures. The function related to the non-equilibrium nature is further explored by performing photothermal conversion study. The ability to observe and capture non-equilibrium states in this supramolecular system will enhance our understanding of the thermodynamic and kinetic features as well as functions of living systems.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Min Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yi Qin
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
7
|
Kumar S, Jana A, Bhowmick S, Das N. Topical progress in medicinal applications of self‐assembled organoplatinum complexes using diverse Pt (II)– and N–based tectons. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Achintya Jana
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Sourav Bhowmick
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| | - Neeladri Das
- Department of Chemistry Indian Institute of Technology Patna Patna Bihar India
| |
Collapse
|
8
|
Shi B, Chai Y, Qin P, Zhao XX, Li W, Zhang YM, Wei TB, Lin Q, Yao H, Qu WJ. Detection of aliphatic aldehydes by a pillar[5]arene-based fluorescent supramolecular polymer with vaporchromic behavior. Chem Asian J 2022; 17:e202101421. [PMID: 35037734 DOI: 10.1002/asia.202101421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Indexed: 11/10/2022]
Abstract
The detection of volatile aliphatic aldehydes is of significance because of their chemical toxicity, physical volatility and widespread applications in chemical industrial processes. In this work, the direct detection of aliphatic aldehydes is tackled using a fluorescent supramolecular polymer with vaporchromic behavior which is contructed by pillar[5]arene-based host-guest intereactions. Thin films with strong orange-yellow fluorescence are prepared by coating the linear supramolecular polymer on glass sheets. When the thin films are exposed to aliphatic aldehydes with different carbon chain lengths, they can selectivly sensing n -butyraldehyde ( C 4 ) and caprylicaldehyde ( C 8 ), accompanied by fluorescence quenching, indicating that the supramolecular polymer is a highly selective vapochromic response material for aliphatic aldehydes with long alkyl chains.
Collapse
Affiliation(s)
- Bingbing Shi
- Northwest Normal University, college of chemistry and chemical engineering, 967 Anning East Road, 730070, Lanzhou, CHINA
| | - Yongping Chai
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Peng Qin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Xing-Xing Zhao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Weichun Li
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - You-Ming Zhang
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Tai-Bao Wei
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Qi Lin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Hong Yao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Wen-Juan Qu
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| |
Collapse
|
9
|
Bhandari P, Modak R, Bhattacharyya S, Zangrando E, Mukherjee PS. Self-Assembly of Octanuclear Pt II/Pd II Coordination Barrels and Uncommon Structural Isomerization of a Photochromic Guest in Molecular Space. JACS AU 2021; 1:2242-2248. [PMID: 34977895 PMCID: PMC8715494 DOI: 10.1021/jacsau.1c00361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/03/2023]
Abstract
Two tetragonal molecular barrels TB1 and TB2 were successfully synthesized by coordination-driven self-assembly of a tetrapyridyl donor (L) of the thiazolo[5,4-d]thiazole backbone with cis-blocked 90° Pd(II) and Pt(II) acceptors, respectively. The single-crystal structure analysis of TB1 revealed the formation of a two-face opened tetragonal Pd8 molecular barrel architecture. In contrast, the isostructural Pt(II) barrel (TB2) is water-soluble. The large confined hydrophobic molecular cavity including wide open windows and good water solubility of the barrel TB2 made it a potential molecular container for the encapsulation of guests with different sizes and properties. This has been exploited to encapsulate and stabilize the open form of a photochromic molecule (G2) in water, while the same photochromic molecule exists exclusively in a cyclic zwitterionic form in aqueous medium in the absence of the barrel TB2. This cyclic form is very stable in water and does not go back to its parent open form under common external stimuli. Surprisingly, reverse switching of the cyclic form to a colored hydrophobic open form was also possible instantly in water upon addition of the solid barrel TB2 into an aqueous solution of G2. Such a fast reverse isomerization of an irreversible process in aqueous medium by utilizing host-guest interaction of the barrel TB2 and the guest G2 is interesting. The barrel TB2 was also capable of encapsulating the water-insoluble radical initiator G1 in aqueous medium.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ritwik Modak
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Zhao J, Zhang Z, Cheng L, Bai R, Zhao D, Wang Y, Yu W, Yan X. Mechanically Interlocked Vitrimers. J Am Chem Soc 2021; 144:872-882. [PMID: 34932330 DOI: 10.1021/jacs.1c10427] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanically interlocked networks (MINs) have emerged as an encouraging platform for the development of mechanically robust yet adaptive materials. However, the difficulty in reversibly breaking the mechanical bonds poses a real challenge to MINs as customizable and sustainable materials. Herein, we couple the vitrimer chemistry with mechanically interlocked structures to generate a new class of MINs─referred to as mechanically interlocked vitrimers (MIVs)─to address the challenge. Specifically, we have prepared the acetoacetate-decorated [2]rotaxane that undergoes catalyst-free condensation reaction with two commercially available multiamine monomers to furnish MIVs. Compared with the control whose wheels are nonslidable under applied force, our MIVs with slidable mechanically interlocked motifs showcase enhanced mechanical performance including Young's modulus (18.5 ± 0.9 vs 1.0 ± 0.1 MPa), toughness (3.7 ± 0.1 vs 0.9 ± 0.1 MJ/m3), and damping capacity (98% vs 72%). The structural basis behind unique property profiles is demonstrated to be the force-induced host-guest dissociation and consequential intramolecular sliding of the wheels along the axles. The peculiar behaviors represent a consecutive energy dissipation mechanism, which provides a complement to other pathways that mainly depend on the breaking of sacrificial bonds. Moreover, by virtue of the vitrimer chemistry of vinylogous urethanes, we impart reprocessability and chemical recyclability to the MINs, thereby empowering the reconfiguration of the networks without breaking of the mechanical bonds. Finally, it is disclosed that the intramolecular motions of [2]rotaxanes could accelerate the dynamic exchange of the vinylogous urethane bonds via loosening the network, suggestive of a synergistic effect between the dual dynamic entities.
Collapse
Affiliation(s)
- Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Duan Z, Xu F, Huang X, Qian Y, Li H, Tian W. Crown Ether-Based Supramolecular Polymers: From Synthesis to Self-Assembly. Macromol Rapid Commun 2021; 43:e2100775. [PMID: 34882882 DOI: 10.1002/marc.202100775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Indexed: 11/09/2022]
Abstract
Supramolecular polymers not only possess many advantages of traditional polymers, but also have many unique characteristics. Supramolecular polymers can be constructed by self-assembly of various noncovalent interactions. Host-guest interaction, as one important type of noncovalent interactions, has been widely applied to construct supramolecular polymers. From the perspective of classification of the recognition system motifs, host-guest recognition motifs mainly include crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene-based host-guest recognition pairs. Crown ethers, as the first-generation macrocyclic hosts, have played a very important part in the development of supramolecular chemistry. Due to the easy modification of crown ethers, various crown ether derivatives have been prepared by attaching some functional groups to the edges of crown ethers, which endowed them with some interesting properties and made them ideal candidates for the fabrication of supramolecular polymers. This review gives a review of the preparation of crown ether-based supramolecular polymers (CSPs) and summarizes crown ether-based recognition pairs, organization methods, topological structures, stimuli-responsiveness, and functional characteristics.
Collapse
Affiliation(s)
- Zhaozhao Duan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Fenfen Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiaohui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yongchao Qian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
12
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew Chem Int Ed Engl 2021; 60:14109-14116. [PMID: 33834590 DOI: 10.1002/anie.202103822] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/07/2022]
Abstract
Fullerene extracts obtained from fullerene soot lack their real application due to their poor solubility in common solvents and difficulty in purification. Encapsulation of these extracts in a suitable host is an important approach to address these issues. We present a new Pd6 barrel (1), which is composed of three 1,4-dihydropyrrolo[3,2-b]pyrrole panels, clipped through six cis-PdII acceptors. Large open windows and cavity make it an efficient host for a large guest. Favorable interactions between the ligand and fullerene (C60 and C70 ) allows the barrel to encapsulate fullerene efficiently. Thorough investigation reveals that barrel 1 has a stronger binding affinity towards C70 over C60 , resulting in the predominant extraction of C70 from a mixture of the two. Finally, the fullerene encapsulated barrels C60 ⊂1 and C70 ⊂1 were found to be efficient for visible-light-induced singlet oxygen generation. Such preferential binding of C70 and photosensitizing ability of C60 ⊂1 and C70 ⊂1 are noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
13
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self‐Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene‐Encapsulated Barrel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
14
|
Yasen W, Dong R, Aini A, Zhu X. Recent advances in supramolecular block copolymers for biomedical applications. J Mater Chem B 2021; 8:8219-8231. [PMID: 32803207 DOI: 10.1039/d0tb01492c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supramolecular block copolymers (SBCs) have received considerable interest in polymer chemistry, materials science, biomedical engineering and nanotechnology owing to their unique structural and functional advantages, such as low cytotoxicity, outstanding biodegradability, smart environmental responsiveness, and so forth. SBCs comprise two or more different homopolymer subunits linked by noncovalent bonds, and these polymers, in particular, combine the dynamically reversible nature of supramolecular polymers with the hierarchical microphase-separated structures of block polymers. A rapidly increasing number of publications on the synthesis and applications of SBCs have been reported in recent years; however, a systematic summary of the design, synthesis, properties and applications of SBCs has not been published. To this end, this review provides a brief overview of the recent advances in SBCs and describes the synthesis strategies, properties and functions, and their widespread applications in drug delivery, gene delivery, protein delivery, bioimaging and so on. In this review, we aim to elucidate the general concepts and structure-property relationships of SBCs, as well as their practical bioapplications, shedding further valuable insights into this emerging research field.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China and School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Aliya Aini
- School of Foreign Languages, Xinjiang University, Urumqi 830046, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
15
|
Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. Self-Assembled Pd12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme. J Am Chem Soc 2020; 142:18981-18989. [DOI: 10.1021/jacs.0c09567] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Bhattacharyya S, Venkateswarulu M, Sahoo J, Zangrando E, De M, Mukherjee PS. Self-Assembled PtII8 Metallosupramolecular Tubular Cage as Dual Warhead Antibacterial Agent in Water. Inorg Chem 2020; 59:12690-12699. [DOI: 10.1021/acs.inorgchem.0c01777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Sun Y, Chen C, Liu J, Stang PJ. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem Soc Rev 2020; 49:3889-3919. [PMID: 32412574 PMCID: PMC7846457 DOI: 10.1039/d0cs00038h] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination-driven suprastructures have attracted much interest due to their unique properties. Among these structures, platinum-based architectures have been broadly studied due to their facile preparation. The resultant two- or three-dimensional (2D or 3D) systems have many advantages over their precursors, such as improved emission tuning, sensitivity as sensors, and capture and release of guests, and they have been applied in biomedical diagnosis as well as in catalysis. Herein, we review the recent results related to platinum-based coordination-driven self-assembly (CDSA), and the text is organized to emphasizes both the synthesis of new metallacycles and metallacages and their various applications.
Collapse
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | | | | | | |
Collapse
|
18
|
Zhao W, Tropp J, Qiao B, Pink M, Azoulay JD, Flood AH. Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion-Anion Linkages. J Am Chem Soc 2020; 142:2579-2591. [PMID: 31931561 DOI: 10.1021/jacs.9b12645] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence-controlled supramolecular polymers offer new design paradigms for generating stimuli-responsive macromolecules with enhanced functionalities. The dynamic character of supramolecular links present challenges to sequence definition in extended supramolecular macromolecules, and design principles remain nascent. Here, we demonstrate the first example of using stoichiometry-control to specify the monomer sequence in a linear supramolecular polymer by synthesizing both a homopolymer and an alternating copolymer from the same glycol-substituted cyanostar macrocycle and phenylene-linked diphosphate monomers. A 2:1 stoichiometry between macrocycle and diphosphate produces a supramolecular homopolymer of general formula (A)n comprised of repeating units of cyanostar-stabilized phosphate-phosphate dimers. Using a 1:1 stoichiometry, an alternating (AB)n structure is produced with half the phosphate dimers now stabilized by the additional counter cations that emerge hierarchically after forming the stronger cyanostar-stabilized phosphate dimers. These new polymer materials and binding motifs are sufficient to bear normal and shear stress to promote significant and tunable adhesive properties. The homopolymer (A)n, consisting of cyanostar-stabilized anti-electrostatic linkages, shows adhesion strength comparable to commercial superglue formulations based on polycyanoacrylate but is thermally reversible. Unexpectedly, and despite including traditional ionic linkages, the alternating copolymer (AB)n shows weaker adhesion strength more similar to commercial white glue based on poly(vinyl acetate). Thus, the adhesion properties can be tuned over a wide range by simply controlling the stoichiometric ratio of monomers. This study offers new insight into supramolecular polymers composed of custom-designed anion and receptor monomers and demonstrates the utility of emerging functional materials based on anion-anion linkages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Joshua Tropp
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Bo Qiao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jason D Azoulay
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Amar H Flood
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
19
|
Shin G, Khazi MI, Kundapur U, Kim B, Kim Y, Lee CW, Kim JM. Cation-Directed Self-Assembly of Macrocyclic Diacetylene for Developing Chromogenic Polydiacetylene. ACS Macro Lett 2019; 8:610-615. [PMID: 35619370 DOI: 10.1021/acsmacrolett.9b00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cation-directed self-assembly process has emerged as a fascinating approach for constructing supramolecular architectures and manifested a diverse range of assembly related applications. Herein, we synthesized a macrocyclic structure containing bis-amidopyridine and photopolymerizable diacetylene template, PyMCDA. Owing to the metal coordination affinity of bis-amidopyridine and the π-π stacking characteristic of diacetylene template and complementary to the cyclic molecular framework, Cs+-directed organic nanotubes are generated via unidirectional self-assembly of PyMCDA. The monomeric PyMCDA nanotubes are transformed into the covalently cross-linked chromogenic polydiacetylene nanotubes (PyMCPDA-Cs+) by UV-promoted topochemical polymerization. The result of a metal-ligand coordination characteristic, geometric parameters in solid-state assemblies, and topochemical polymerization behavior reveals a generation of Cs+ ion inserted nanotubes. Interestingly, PyMCDA-Cs+ nanotubes display thermochromic property with a brilliant blue-to-red color transition.
Collapse
Affiliation(s)
| | | | | | | | - Youngmee Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | | |
Collapse
|
20
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Yan QQ, Zhou LP, Zhou HY, Wang Z, Cai LX, Guo XQ, Sun XQ, Sun QF. Metallopolymers cross-linked with self-assembled Ln4L4 cages. Dalton Trans 2019; 48:7080-7084. [DOI: 10.1039/c8dt05015e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a metallopolymer based on a polydivinylbenzene (PDVB) matrix cross-linked by tetranuclear Ln4L4 cages.
Collapse
Affiliation(s)
- Qian-Qian Yan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Hai-Yue Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Zhuo Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Xiao-Qi Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- PR China
| |
Collapse
|
22
|
Manganaro N, Pisagatti I, Notti A, Parisi MF, Gattuso G. Self-sorting assembly of a calixarene/crown ether polypseudorotaxane gated by ion-pairing. NEW J CHEM 2019. [DOI: 10.1039/c9nj01583c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A polypseudorotaxane composed of a calix[5]arene-diammonium supramolecular polymer and dibenzo-24-crown-8 wheels self-assembles only in the presence of superweak counterions
Collapse
Affiliation(s)
- Nadia Manganaro
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Ilenia Pisagatti
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Anna Notti
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Melchiorre F. Parisi
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Giuseppe Gattuso
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| |
Collapse
|
23
|
Li B, He T, Fan Y, Yuan X, Qiu H, Yin S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem Commun (Camb) 2019; 55:8036-8059. [PMID: 31206102 DOI: 10.1039/c9cc02472g] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular polymers have received considerable attention during the last few decades due to their scientific value in polymer chemistry and profound implications for future developments of advanced materials. Discrete supramolecular coordination complexes (SCCs) with well-defined size, shape, and geometry have been widely employed to construct hierarchical systems by coordination-driven self-assembly with the spontaneous formation of metal-ligand bonds, which results in the formation of well-defined two-dimensional (2D) metallacycles or three-dimensional (3D) metallacages with high functionalities. The incorporation of discrete SCCs into supramolecular polymers by the orthogonal combination of metal-ligand coordination and other noncovalent interactions or covalent bonding could further facilitate the construction of novel supramolecular polymers with hierarchical architectures and multiple functions including controllable uptake and release of guest molecules, providing a flexible platform for the development of smart materials. In this review, the recent progress in metallacycle/metallacage-cored supramolecular polymers that were constructed by the combination of metal-ligand interactions and other orthogonal interactions (including hydrophobic or hydrophilic interactions, hydrogen bonding, van der Waals forces, π-π stacking, electrostatic interactions, host-guest interactions and covalent bonding) has been discussed. In addition, the potential applications of metallacycle/metallacage-cored supramolecular polymers in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.
Collapse
Affiliation(s)
- Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Liu Q, Wang C, Guo Y, Peng C, Narayanan A, Kaur S, Xu Y, Weiss RA, Joy A. Opposing Effects of Side-Chain Flexibility and Hydrogen Bonding on the Thermal, Mechanical, and Rheological Properties of Supramolecularly Cross-Linked Polyesters. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Abstract
Hierarchical self-assembly (HAS) is a multilevel organization process that first assembles elementary molecular units into ordered secondary structures via noncovalent interactions, which further act as the building blocks to form more complex multifunctional superstructures at the next level(s). The HAS strategy has been used as a versatile method for the preparation of soft-matter nanoarchitectures of defined size and morphologies, tunable luminescence, and biological importance. However, such preparation can be greatly simplified if well-defined dynamic structures are employed as the cores that upon linking form the desired nanoarchitectures. Discrete supramolecular coordination complexes (SCCs) with well-defined shapes, sizes, and internal cavities have been widely employed to construct hierarchical systems with functional diversity. This Account summarizes the prevailing strategies used in recent years in the preparation of SCC-based HASs and illustrates how the combination of dynamic metal-ligand coordination with other interactions was used to obtain hierarchical systems with interesting properties. HASs with dual orthogonal interactions involving coordination-driven self-assembly and hydrogen bonding/host-guest interaction generally result in robust and flexible supramolecular gels. Likewise, hybridization of SCCs with a suitable dynamic covalent network via a hierarchical strategy is useful to prepare materials with self-healing properties. The intrinsic positive charges of the SCCs also make them suitable precursors for the construction of HASs via electrostatic interactions with negatively charged biological/abiological molecules. Furthermore, the interplay between the hydrophilic and lipophilic characters of HASs by varying the number and spacial orientation of alkyl/oxyethylene chains of the SCC is a simple yet controllable approach to prepare ordered and tunable nanostructures. Certain SCC-cored hierarchical systems exhibit reversible polymorphism, typically between micellar, nanofiber, and vesicular phases, in response to various external perturbations: heat, photoirradiation, pH-variance, redox-active agents, etc. At the same time, multiple noncovalent interaction mediated HASs are growing in numbers and are promising candidates for obtaining functionally diverse materials. The photophysical properties of SCC-based HASs have been used in many analytical applications. For example, embedding tetraphenylethene (TPE)-based pyridyl ligands within metallo-supramolecular structures partially restricts the molecular rotations of its phenyl rings, endowing the resultant SCCs with weak emissions. Further aggregation of such HASs in suitable solvents results in a marked enhancement in emission intensity along with quantum yields. They act as sensitive sensors for different analytes, including pathogens, drugs, etc. HASs are also useful to develop multidrug systems with cooperative chemotherapeutic effects. Hence, the use of HASs with theranostic SCCs combining cell-imaging agents and chemotherapeutic scaffolds is a promising drug delivery strategy for cancer theranostics. At the same time, their responsiveness to stimuli, oftentimes due to the dynamic nature of the metal-ligand interactions, play an important role in drug release via a disassembly mechanism.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Manik Lal Saha
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Zhang CW, Jiang ST, Yin GQ, Li X, Zhao XL, Yang HB. Dual Stimuli-Responsive Cross-Linked AIE Supramolecular Polymer Constructed through Hierarchical Self-Assembly. Isr J Chem 2018. [DOI: 10.1002/ijch.201800062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 P. R. China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 P. R. China
| | - Xiaopeng Li
- Department of Chemistry; University of South Florida; Tampa, Florida 33620 United States
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 P. R. China
| |
Collapse
|
27
|
Lai S, Jin Y, Li H, Sun X, Pan J. Hierarchical self-assembly of Y-shaped amphiphilic triblock polyurethane/poly(acrylic acid) complexes: Giant vesicles, vesicles, 3D network, and bulk structures. J Appl Polym Sci 2018. [DOI: 10.1002/app.46503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuangquan Lai
- Ministry of Education, Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University; Chengdu 610065 China
| | - Yong Jin
- Ministry of Education, Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University; Chengdu 610065 China
| | - Hanping Li
- Ministry of Education, Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University; Chengdu 610065 China
| | - Xiaopeng Sun
- Ministry of Education, Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University; Chengdu 610065 China
| | - Jiezhou Pan
- Ministry of Education, Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University; Chengdu 610065 China
| |
Collapse
|
28
|
Zhang CW, Ou B, Jiang ST, Yin GQ, Chen LJ, Xu L, Li X, Yang HB. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym Chem 2018. [DOI: 10.1039/c8py00226f] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cross-linked AIE supramolecular polymer gels were successfully constructed by hierarchical self-assembly.
Collapse
Affiliation(s)
- Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Bo Ou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiaopeng Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
29
|
Yu S, Yang Y, Chen T, Xu J, Jin LY. Donor-acceptor interaction-driven self-assembly of amphiphilic rod-coil molecules into supramolecular nanoassemblies. NANOSCALE 2017; 9:17975-17982. [PMID: 29130091 DOI: 10.1039/c7nr05329k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rigid-flexible amphiphilic molecules consisting of an aromatic segment based on pyrene and biphenyl units and hydrophilic polyethylene oxide chains self-assemble into lamellar, hexagonal columnar, and two-dimensional columnar nanostructures in the bulk state. In aqueous solution, these molecules self-assemble into nanofibers, spherical micelles, and multilayer nanotubes, depending on the chain or rod length of the molecules. Notably, ordered nanostructures of supramolecular polymers, such as single-layer curving fragments, nanofibers, and nanosheets, were constructed through charge-transfer interactions between the nanoobjects and an electron-acceptor molecule, 2,4,5,7-tetranitrofluorenone. These experimental results reveal that diverse supramolecular morphologies can be controlled by tuning rod-coil molecular interactions or charge-transfer interactions between the donor and acceptor molecules.
Collapse
Affiliation(s)
- Shengsheng Yu
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China.
| | | | | | | | | |
Collapse
|
30
|
Jamalpour S, Ghaffarian SR, Goldansaz H. Using supramolecular associations to create stable cellular structures in amorphous soft polymers. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Seifollah Jamalpour
- Department of Polymer Engineering; Amirkabir University of Technology; Tehran Iran
| | | | - Hadi Goldansaz
- Department of Polymer Engineering; Amirkabir University of Technology; Tehran Iran
- Bio and Soft Matter Division (BSMA), Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
31
|
Zhang P, Yuan K, Li C, Zhang X, Wu W, Jiang X. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Zhang
- Department of Polymer Science & Engineering; College of Chemistry & Chemical Engineering; and Jiangsu Key Laboratory for Nanotechnology; Nanjing University; Nanjing 210023 China
| | - Kangjun Yuan
- Department of Polymer Science & Engineering; College of Chemistry & Chemical Engineering; and Jiangsu Key Laboratory for Nanotechnology; Nanjing University; Nanjing 210023 China
| | - Cheng Li
- Department of Polymer Science & Engineering; College of Chemistry & Chemical Engineering; and Jiangsu Key Laboratory for Nanotechnology; Nanjing University; Nanjing 210023 China
| | - Xiaoke Zhang
- Department of Polymer Science & Engineering; College of Chemistry & Chemical Engineering; and Jiangsu Key Laboratory for Nanotechnology; Nanjing University; Nanjing 210023 China
| | - Wei Wu
- Department of Polymer Science & Engineering; College of Chemistry & Chemical Engineering; and Jiangsu Key Laboratory for Nanotechnology; Nanjing University; Nanjing 210023 China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering; College of Chemistry & Chemical Engineering; and Jiangsu Key Laboratory for Nanotechnology; Nanjing University; Nanjing 210023 China
| |
Collapse
|
32
|
Martinez-Cuezva A, Saura-Sanmartin A, Nicolas-Garcia T, Navarro C, Orenes RA, Alajarin M, Berna J. Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis-Hillman reaction. Chem Sci 2017; 8:3775-3780. [PMID: 28580109 PMCID: PMC5436546 DOI: 10.1039/c7sc00724h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022] Open
Abstract
En route to a photoswitchable interlocked catalyst we have proved the ability of thiodiglycolamide to act as a template in the formation of hydrogen-bonded [2]rotaxanes. X-ray diffraction studies reveal the shielding of the sulfide atom by the macrocycle. A series of molecular shuttles are described as having an isomerizable fumaramide and thiodiglycolamide binding sites for controlling the relative ring position at will. By employing these systems as photoregulated catalysts, the TiCl4-mediated chalcogeno-Morita-Baylis-Hillman reaction is tested. In the presence of the maleamide shuttle, in which the sulfide function is encapsulated by the macrocycle, a complete loss in control of the geometry of the produced aldol is observed. The E-aldol adduct is predominantly obtained when the photoisomerized fumaramide shuttle, in which the sulfide function is exposed, is used.
Collapse
Affiliation(s)
- Alberto Martinez-Cuezva
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Adrian Saura-Sanmartin
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Tomas Nicolas-Garcia
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Cristian Navarro
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | | | - Mateo Alajarin
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Jose Berna
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| |
Collapse
|
33
|
Goujon A, Mariani G, Lang T, Moulin E, Rawiso M, Buhler E, Giuseppone N. Controlled Sol-Gel Transitions by Actuating Molecular Machine Based Supramolecular Polymers. J Am Chem Soc 2017; 139:4923-4928. [PMID: 28286945 DOI: 10.1021/jacs.7b00983] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The implementation of artificial molecular machines in polymer science is an important objective that challenges chemists and physicists in order to access an entirely new class of smart materials. To design such systems, the amplification of a mechanical actuation from the nanoscale up to a macroscopic response in the bulk material is a central issue. In this article we show that bistable [c2]daisy chain rotaxanes (i.e., molecular muscles) can be linked into main-chain Upy-based supramolecular polymers. We then reveal by an in depth quantitative study that the pH actuation of the mechanically active rotaxane at the nanoscale influences the physical reticulation of the polymer chains by changing the supramolecular behavior of the Upy units. This nanoactuation within the local structure of the main chain polymer results in a mechanically controlled sol-gel transition at the macroscopic level.
Collapse
Affiliation(s)
- Antoine Goujon
- SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84047, 67034 Cedex 2 Strasbourg, France
| | - Giacomo Mariani
- Matière et Systèmes Complexes (MSC) Laboratory, UMR CNRS 7057, Sorbonne Paris Cité, University of Paris Diderot-Paris VII , Bâtiment Condorcet, 75205 Cedex 13 Paris, France
| | - Thomas Lang
- SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84047, 67034 Cedex 2 Strasbourg, France
| | - Emilie Moulin
- SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84047, 67034 Cedex 2 Strasbourg, France
| | - Michel Rawiso
- SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84047, 67034 Cedex 2 Strasbourg, France
| | - Eric Buhler
- Matière et Systèmes Complexes (MSC) Laboratory, UMR CNRS 7057, Sorbonne Paris Cité, University of Paris Diderot-Paris VII , Bâtiment Condorcet, 75205 Cedex 13 Paris, France
| | - Nicolas Giuseppone
- SAMS research group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84047, 67034 Cedex 2 Strasbourg, France
| |
Collapse
|
34
|
Yu G, Suzaki Y, Osakada K. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt II. Chem Asian J 2017; 12:372-377. [PMID: 27973709 DOI: 10.1002/asia.201601554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/07/2023]
Abstract
Dibenzo[24]crown-8 (DB24C8) forms rotaxanes with a linear molecule having a dialkylammonium group and a triazole group as well as with the acetylation product of a cationic axle molecule. The former cationic rotaxane is stabilized by multiple intermolecular hydrogen bonds between the NH2+ and oxyethylene groups. The neutral rotaxane contains the macrocycle in the vicinity of the terminal aryl group. The co-conformation of both the cationic and neutral rotaxanes can be fixed by coordination of the triazole group of the axle molecule to PtCl2 (dmso)2 . A 1 H NMR spectroscopic study on the thermodynamics of the Pt coordination revealed a larger association constant for the rotaxanes than for the corresponding axle molecules and a larger value for the neutral rotaxane than for the cationic rotaxane.
Collapse
Affiliation(s)
- Gilbert Yu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama, 226-8503, Japan.,Chemistry Department, School of Science and Engineering, Ateneo de Manila University, Quezon City, Manila, 1108, Philippines
| | - Yuji Suzaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
35
|
Zhan TG, Lin MD, Wei J, Liu LJ, Yun MY, Wu L, Zheng ST, Yin HH, Kong LC, Zhang KD. Visible-light responsive hydrogen-bonded supramolecular polymers based on ortho-tetrafluorinated azobenzene. Polym Chem 2017. [DOI: 10.1039/c7py01612c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Visible-light responsive hydrogen-bonded supramolecular polymers have been fabricated, whose properties could be regulated through the visible-light-triggered photoisomerization of the ortho-tetrafluorinated azobenzene.
Collapse
|
36
|
Wang Q, Zhang P, Li Y, Tian L, Cheng M, Lu F, Lu X, Fan Q, Huang W. Neutral linear supramolecular polymers constructed by three different interactions. RSC Adv 2017. [DOI: 10.1039/c7ra05351g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neutral linear supramolecular polymers were constructed by the combination of quadruple hydrogen bonding, pillar[5]arene-based molecular recognition and π–π donor–acceptor interactions.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Peng Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yuanyuan Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Lu Tian
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ming Cheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| |
Collapse
|
37
|
Kang Y, Cai Z, Huang Z, Tang X, Xu JF, Zhang X. Controllable Supramolecular Polymerization Promoted by Host-Enhanced Photodimerization. ACS Macro Lett 2016; 5:1397-1401. [PMID: 35651207 DOI: 10.1021/acsmacrolett.6b00871] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this letter, we report a new method of controllable supramolecular polymerization, taking advantage of host-enhanced photodimerization. The low-molecular-weight supramolecular oligomers were formed by noncovalent complexation between cucurbit[8]urils (CB[8]) and the bifunctional monomers (DBN) with Brooker's merocyanine moiety (MOED) on either end. Interestingly, when irradiated with UV light, the supramolecular oligomers could transform into supramolecular polymers with high molecular weight. The molecular weight of supramolecular polymers could be controlled by varying the irradiation time. It is highly anticipated that this work can enrich the methods on the modulation of supramolecular polymerization.
Collapse
Affiliation(s)
- Yuetong Kang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengguo Cai
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zehuan Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Ma J, Meng Q, Hu X, Li B, Ma S, Hu B, Li J, Jia X, Li C. Synthesis of a Water-Soluble Carboxylatobiphen[4]arene and Its Selective Complexation toward Acetylcholine. Org Lett 2016; 18:5740-5743. [DOI: 10.1021/acs.orglett.6b03005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junwei Ma
- Department of Chemistry,
Center for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Xiaoshi Hu
- School of Physics and Materials Science,
Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Li
- Department of Chemistry,
Center for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Suxiang Ma
- Department of Chemistry,
Center for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Bingwen Hu
- School of Physics and Materials Science,
Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, P. R. China
| | - Jian Li
- Department of Chemistry,
Center for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Xueshun Jia
- Department of Chemistry,
Center for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunju Li
- Department of Chemistry,
Center for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
39
|
Liu J, Morikawa MA, Lei H, Ishiba K, Kimizuka N. Hierarchical Self-Assembly of Luminescent Tartrate-Bridged Chiral Binuclear Tb(III) Complexes in Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10597-10603. [PMID: 27682007 DOI: 10.1021/acs.langmuir.6b02254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new family of supramolecular metalloamphiphiles carrying two metal centers is developed. They are formed by bridging two coordinatively unsaturated lipophilic Tb3+ complexes (TbL+) with chiral dicarboxylate anions. The formation of bridging coordination bonds is confirmed using UV spectroscopy, induced circular dichroism (ICD), increased luminescence intensity of TbL+, and electrospray ionization mass spectrometry (ESIMS) analysis. These supramolecular metalloamphiphiles hierarchically self-assemble in ethanol to give luminescent nanospheres, as observed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The two hydroxyl groups introduced in the bridging ligands of [TbL]2(d-/l-tartrate) significantly promote self-assembly by increasing coherent forces via intermolecular hydrogen bonding. The observed self-assembly in ethanol also merits mention because such polar alcoholic media have been unfavorable for conventional molecular self-assemblies. The present approach offers a new molecular design strategy for composable metalloamphiphiles.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Masa-Aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hairui Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Keita Ishiba
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
40
|
Lewis JEM, Winn J, Cera L, Goldup SM. Iterative Synthesis of Oligo[n]rotaxanes in Excellent Yield. J Am Chem Soc 2016; 138:16329-16336. [PMID: 27700073 DOI: 10.1021/jacs.6b08958] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present an operationally simple iterative coupling strategy for the synthesis of oligomeric homo- and hetero[n]rotaxanes with precise control over the position of each macrocycle. The exceptional yield of the AT-CuAAC reaction, combined with optimized conditions that allow the rapid synthesis of the target oligomers, opens the door to the study of precision-engineered oligomeric interlocked molecules.
Collapse
Affiliation(s)
- James E M Lewis
- Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | - Joby Winn
- School of Biological Sciences, Queen Mary University of London , London E1 4NS, U.K
| | - Luca Cera
- School of Biological Sciences, Queen Mary University of London , London E1 4NS, U.K
| | - Stephen M Goldup
- Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
41
|
Song Q, Gao Y, Xu JF, Qin B, Serpe MJ, Zhang X. Supramolecular Microgels Fabricated from Supramonomers. ACS Macro Lett 2016; 5:1084-1088. [PMID: 35658185 DOI: 10.1021/acsmacrolett.6b00592] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This letter describes a new method for fabricating supramolecular microgels from supramonomers. To this end, we designed and assembled supramonomers with one acrylate moiety on each end on the basis of noncovalent host-guest interactions, which could be utilized as a cross-linker. Then supramolecular microgels were fabricated through the copolymerization of supramonomers and N-isopropylacrylamide (NIPAm). The supramolecular microgels not only showed temperature-responsive properties as expected from conventional PNIPAm-based microgels but also exhibited stimuli-responsive and degradable properties benefiting from the dynamic nature of supramonomers. In addition, it was found that the degradation kinetics of the supramolecular microgels was related greatly to the structure of the microgels, providing a way to tune the degradation kinetics of the supramolecular microgels. Various supramolecular microgels with desired structure and function are supposed to be facilely fabricated from supramonomers. It is anticipated that the supramolecular microgels can enrich the application of microgels by easily endowing the microgels with stimuli-responsive and degradable properties.
Collapse
Affiliation(s)
- Qiao Song
- The Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yongfeng Gao
- Department
of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiang-Fei Xu
- The Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo Qin
- The Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Michael J. Serpe
- Department
of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xi Zhang
- The Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Gao Z, Zhu J, Han Y, Lv X, Zhang X, Wang F. Ligand effects on cooperative supramolecular polymerization of platinum(ii) acetylide complexes. Polym Chem 2016. [DOI: 10.1039/c6py01440b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ligand substitutes exert significant impacts on supramolecular polymerization and macroscopic gelation behaviors of platinum(ii) acetylide monomers.
Collapse
Affiliation(s)
- Zhao Gao
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Junlong Zhu
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Xiaoqin Lv
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Xiaolong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|