1
|
Lee MT. Functionalized Triblock Copolymers with Tapered Design for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2024; 16:2382. [PMID: 39204600 PMCID: PMC11359524 DOI: 10.3390/polym16162382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
2
|
Gavrilov AA, Potemkin II. Copolymers with Nonblocky Sequences as Novel Materials with Finely Tuned Properties. J Phys Chem B 2023; 127:1479-1489. [PMID: 36790352 DOI: 10.1021/acs.jpcb.2c07689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The copolymer sequence can be considered as a new tool to shape the resulting system properties on demand. This perspective is devoted to copolymers with "partially segregated" (or nonblocky) sequences. Such copolymers include gradient copolymers and copolymers with random sequences as well as copolymers with precisely controlled sequences. We overview recent developments in the synthesis of these systems as well as new findings regarding their properties, in particular, self-assembly in solutions and in melts. An emphasis is put on how the microscopic behavior of polymer chains is influenced by the chain sequences. In addition to that, a novel class of approaches allowing one to efficiently tackle the problem of copolymer chain sequence design─data driven methods (artificial intelligence and machine learning)─is discussed.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Ketkar PM, Shen KH, Fan M, Hall LM, Epps TH. Quantifying the Effects of Monomer Segment Distributions on Ion Transport in Tapered Block Polymer Electrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Priyanka M. Ketkar
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas H. Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Zhang Z, Krajniak J, Ganesan V. A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jakub Krajniak
- Independent researcher, os. Kosmonautow 13/56, 61-631 Poznan, Poland
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Shen KH, Hall LM. Ion Conductivity and Correlations in Model Salt-Doped Polymers: Effects of Interaction Strength and Concentration. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00216] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Van der Ven A, Deng Z, Banerjee S, Ong SP. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chem Rev 2020; 120:6977-7019. [DOI: 10.1021/acs.chemrev.9b00601] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anton Van der Ven
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106-5050, United States
| | - Zhi Deng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Swastika Banerjee
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| | - Shyue Ping Ong
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|
8
|
Seo Y, Shen KH, Brown JR, Hall LM. Role of Solvation on Diffusion of Ions in Diblock Copolymers: Understanding the Molecular Weight Effect through Modeling. J Am Chem Soc 2019; 141:18455-18466. [PMID: 31674178 DOI: 10.1021/jacs.9b07227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Youngmi Seo
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jonathan R. Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Zhang Z, Krajniak J, Keith JR, Ganesan V. Mechanisms of Ion Transport in Block Copolymeric Polymerized Ionic Liquids. ACS Macro Lett 2019; 8:1096-1101. [PMID: 35619445 DOI: 10.1021/acsmacrolett.9b00478] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the results of a multiscale simulation framework investigating the ion transport mechanisms in multicomponent polymerized ionic liquids. Three different classes of polymeric ionic liquid systems, namely, random copolymers, lamellae forming block copolymers, and homopolymers, are constructed at the coarse-grained scale, and their atomistic counterparts are derived by using a reverse mapping method. Using such a framework, we investigate the influence of morphology on ion transport properties of such polymerized ionic liquids. Our results for ion mobilities are in qualitative agreement with experimental observations. Further analysis of random copolymer and block copolymer systems reveal that the reduced ion mobilities in such systems arise from the influence of architecture and morphology on ion coordination and intramolecular hopping events.
Collapse
Affiliation(s)
- Zidan Zhang
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jakub Krajniak
- Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jordan R Keith
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Alshammasi MS, Escobedo FA. Correlation between Ionic Mobility and Microstructure in Block Copolymers. A Coarse-Grained Modeling Study. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mohammed Suliman Alshammasi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernando A. Escobedo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Shen KH, Brown JR, Hall LM. Diffusion in Lamellae, Cylinders, and Double Gyroid Block Copolymer Nanostructures. ACS Macro Lett 2018; 7:1092-1098. [PMID: 35632941 DOI: 10.1021/acsmacrolett.8b00506] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We study transport of penetrants through nanoscale morphologies motivated by common block copolymer morphologies, using confined random walks and coarse-grained simulations. Diffusion through randomly oriented grains is 1/3 for cylinder and 2/3 for lamellar morphologies versus an unconstrained (homopolymer) system, as previously understood. Diffusion in the double gyroid structure depends on the volume fraction and is 0.47-0.55 through the minority phase at 30-50 vol % and 0.73-0.80 through the majority at 50-70 vol %. Thus, among randomly oriented standard minority phase structures with no grain boundary effects, lamellae is preferable for transport.
Collapse
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jonathan R. Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Brown JR, Seo Y, Hall LM. Ion Correlation Effects in Salt-Doped Block Copolymers. PHYSICAL REVIEW LETTERS 2018; 120:127801. [PMID: 29694088 DOI: 10.1103/physrevlett.120.127801] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/12/2017] [Indexed: 06/08/2023]
Abstract
We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.
Collapse
Affiliation(s)
- Jonathan R Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Youngmi Seo
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
13
|
Gartner TE, Kubo T, Seo Y, Tansky M, Hall LM, Sumerlin BS, Epps TH. Domain Spacing and Composition Profile Behavior in Salt-Doped Cyclic vs Linear Block Polymer Thin Films: A Joint Experimental and Simulation Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Youngmi Seo
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Maxym Tansky
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | |
Collapse
|
14
|
Brown JR, Seo Y, Sides SW, Hall LM. Unique Phase Behavior of Inverse Tapered Block Copolymers: Self-Consistent Field Theory and Molecular Dynamics Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jonathan R. Brown
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, Ohio 43210, United States
| | - Youngmi Seo
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, Ohio 43210, United States
| | - Scott W. Sides
- Tech-X Corporation, 5621 Arapahoe Ave. Suite A, Boulder, Colorado 80303, United States
| | - Lisa M. Hall
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, Ohio 43210, United States
| |
Collapse
|