1
|
Shen K, Liu H, Qiu C, Yuan M, Chen Z, Qi H. Scalable Fabrication of Structurally Stable Polymer Film with Excellent UV-Shielding, Fluorescent, and Antibacterial Capabilities. Macromol Rapid Commun 2024; 45:e2400015. [PMID: 38414279 DOI: 10.1002/marc.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Indexed: 02/29/2024]
Abstract
This research presents a new approach to facilely fabricating a multifunctional film using polyvinyl alcohol (PVA) as the base material. The film is modified chemically to incorporate various desirable properties such as high transparency, UV-shielding, antibacterial activity, and fluorescence. The fabrication process of this film is straightforward and efficient. The modified film showed exceptional UV-blocking capability, effectively blocking 100% of UV radiation. It also exhibits strong antibacterial properties. Additionally, the film emitted bright blue fluorescence, which can be useful in various optical and sensing applications. Despite the chemical modification, the film retained the excellent properties of PVA, including high transparency (90%) at 550 nm and good mechanical strength. Furthermore, it demonstrated remarkable stability even under harsh conditions such as exposure to long-term UV radiation, extreme temperatures (-40 or 120 °C), or immersion in different solvents. Overall, this work showcases a promising strategy to develop versatile, structurally stable, transparent, and flexible polymer films with multiple functionalities. These films have potential applications in various fields that require protection, such as packaging materials, biomedical devices, and optical components.
Collapse
Affiliation(s)
- Kaiyuan Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Changjing Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Mengzhen Yuan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhishan Chen
- Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd., Qingyuan, 511500, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
2
|
Guan X, Xing S, Liu Y. Engineered Cell Membrane-Camouflaged Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:413. [PMID: 38470744 DOI: 10.3390/nano14050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Recent strides in nanomaterials science have paved the way for the creation of reliable, effective, highly accurate, and user-friendly biomedical systems. Pioneering the integration of natural cell membranes into sophisticated nanocarrier architectures, cell membrane camouflage has emerged as a transformative approach for regulated drug delivery, offering the benefits of minimal immunogenicity coupled with active targeting capabilities. Nevertheless, the utility of nanomaterials with such camouflage is curtailed by challenges like suboptimal targeting precision and lackluster therapeutic efficacy. Tailored cell membrane engineering stands at the forefront of biomedicine, equipping nanoplatforms with the capacity to conduct more complex operations. This review commences with an examination of prevailing methodologies in cell membrane engineering, spotlighting strategies such as direct chemical modification, lipid insertion, membrane hybridization, metabolic glycan labeling, and genetic engineering. Following this, an evaluation of the unique attributes of various nanomaterials is presented, delivering an in-depth scrutiny of the substantial advancements and applications driven by cutting-edge engineered cell membrane camouflage. The discourse culminates by recapitulating the salient influence of engineered cell membrane camouflage within nanomaterial applications and prognosticates its seminal role in transformative healthcare technologies. It is envisaged that the insights offered herein will catalyze novel avenues for the innovation and refinement of engineered cell membrane camouflaged nanotechnologies.
Collapse
Affiliation(s)
- Xiyuan Guan
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
4
|
Talybov GM, Shirinova NA, Yusubov FV, Gurbanov GR, Zalov AZ. Condensation of α-Chloroethers of Unsaturated C3-Alcohols with Thioacetamide and Thioureas. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322212057x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Liu H, Yang H, Zhu K, Peng F, Guo L, Qi H. Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film via the Hantzsch reaction for broadband UV protection. MATERIALS HORIZONS 2022; 9:815-824. [PMID: 34908090 DOI: 10.1039/d1mh01783g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excessive exposure to ultraviolet (UV) light is harmful to human health. However, the traditional preparation of anti-UV films through the doping of UV absorbers leads to unstable products. Chemical modification of polyvinyl alcohol (PVA) to fabricate functional derivatives expand the application of these materials. Herein, a 1,4-dihydropyridine (DHP) fluorescent ring with a conjugated structure as a strong UV-absorber group was introduced onto a polyvinyl alcohol acetoacetate (PVAA) film to improve its UV-blocking performance. Firstly, PVAA was prepared via transesterification using tert-butyl acetoacetate (t-BAA). Then, the Hantzsch reaction was carried out on the surface of the PVAA film at room temperature. The resulting film showed high transparency, bright fluorescence emission, good mechanical properties, and outstanding stability. The introduction of the hydrophobic carbon chain reduced the hydrophilicity and swelling capacity of the PVAA film. In addition, the conjugated structure endowed the fluorescent film with excellent UV-blocking performance, where almost 100% UVA and UVB spectra could be shielded. The UV-blocking properties of the prepared films were persistent when they were exposed to UV irradiation, solvents, and subjected to thermal treatment. This work presents a facile and environmentally-friendly strategy by which to fabricate a multifunctional PVA-based film, which holds great potential for application in the anti-counterfeiting and UV-blocking fields.
Collapse
Affiliation(s)
- Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Hongying Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
7
|
Windbiel JT, Llevot A. Microgel Preparation by Miniemulsion Polymerization of Passerini Multicomponent Reaction Derived Acrylate Monomers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julian Tobias Windbiel
- Karlsruhe Institute of Technology (KIT), Laboratory of Applied Chemistry Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Eggenstein‐Leopoldshafen 76344 Germany
| | - Audrey Llevot
- Bordeaux INP University of Bordeaux, Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland, F‐33607 Pessac cedex France
| |
Collapse
|
8
|
Mao T, Zhu C, Tao L. Multifunctional Polymer–Protein Conjugates Generated by Multicomponent Reactions†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tengfei Mao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chongyu Zhu
- Department of Materials Science Fudan University Shanghai 200433 China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
9
|
Zeng Y, Zhu C, Tao L. Stimuli-Responsive Multifunctional Phenylboronic Acid Polymers Via Multicomponent Reactions: From Synthesis to Application. Macromol Rapid Commun 2021; 42:e2100022. [PMID: 33713503 DOI: 10.1002/marc.202100022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive polymers undergo changes under different environmental conditions. Among them, phenylboronic acid (PBA) containing polymers (PBA-polymers) are unique, because they can selectively react with diols to generate borates that are sensitive to pH, sugars, and H2 O2 , and can be effectively used to synthesize smart drug carriers and self-healing hydrogels. Recently, multifunctional PBA-polymers (MF-PBA-polymers) have been developed using multicomponent reactions (MCRs) to introduce PBA groups into polymer structures. These MF-PBA-polymers have features similar to those of traditional PBA-polymers; moreover, they exhibit additional properties, such as fluorescence, antimicrobial activity, and antioxidant capability, when different MCRs are used. In this mini review, the preparation of these MF-PBA-polymers are summarized and the new properties/functions that have been introduced into these polymers using different MCRs are discussed. The uses of these MF-PBA-polymers as fluorescent cell anticoagulants, drug carriers, and gelators of functional self-healing hydrogels have been discussed. Additionally, the challenges encountered during their preparation are discussed and also the future developments in this field are touched upon.
Collapse
Affiliation(s)
- Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chongyu Zhu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Robust Fabrication of Fluorescent Cellulosic Materials via Hantzsch Reaction. Macromol Rapid Commun 2020; 42:e2000496. [DOI: 10.1002/marc.202000496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
|
11
|
Liu G, Pan R, Wei Y, Tao L. The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromol Rapid Commun 2020; 42:e2000459. [PMID: 33006198 DOI: 10.1002/marc.202000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The Hantzcsh reaction is a robust four-component reaction for the efficient generation of 1,4-dihydropyridine (1,4-DHP) derivatives. Recently, this reaction has been introduced into polymer chemistry in order to develop polymers having 1,4-DHP structures in the main and/or side chains. The 1,4-DHP groups confer new properties/functions to the polymers. This mini-review summarizes the recent studies on the development of new functional polymers by using the Hantzsch reaction. Several synthetic approaches, including polycondensation, post-polymerization modification (PPM), monomer to polymer strategy, and one-pot strategy are introduced; different applications (protein conjugation, formaldehyde detection, drug carrier, and anti-bacterial adhesion) of the resulting polymers are emphasized. Meanwhile, the future development of the Hantzsch reaction in exploring new functional polymers is also discussed.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruihao Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Zhang W, Shen S, Zhang Z, Huang Y, Weng Y, Chen G. Using One Photoredox Catalyst to Simultaneously Mediate Two Different Polymerizations for Photo-Triggered Multi-Component Orthogonal Polymerizations. Macromol Rapid Commun 2020; 41:e2000373. [PMID: 32808416 DOI: 10.1002/marc.202000373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/01/2020] [Indexed: 11/10/2022]
Abstract
The development of multi-component orthogonal polymerizations (MOPs) with simple procedure and high efficiency is crucial for rational polymer synthesis. In this work, photo-triggered Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization are first investigated, employing copper(II) thioxanthone carboxylate (Cu(TX)2 ) as photoredox catalyst and sunlight as stimuli. Then, the novel MOPs using one photoredox catalyst, Cu(TX)2 to simultaneously mediate two different photopolymerizations, are successfully realized in one-pot, where photo-induced electron transfer atom transfer radical polymerization and photo-activated CuAAC polymerization can effectively proceed in a one-pot and non-interfering fashion to afford predetermined copolymers with well-defined structure.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Shuyi Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Huang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
13
|
Costanzo P, Nardi M, Oliverio M. Similarity and Competition between Biginelli and Hantzsch Reactions: an Opportunity for Modern Medicinal Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paola Costanzo
- Department of Health Sciences; University Magna Graecia of Catanzaro; Viale Europa - Loc. Germaneto 88100 Catanzaro Italy
| | - Monica Nardi
- Department of Health Sciences; University Magna Graecia of Catanzaro; Viale Europa - Loc. Germaneto 88100 Catanzaro Italy
| | - Manuela Oliverio
- Department of Health Sciences; University Magna Graecia of Catanzaro; Viale Europa - Loc. Germaneto 88100 Catanzaro Italy
| |
Collapse
|
14
|
Javanbakht S, Shaabani A. Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS APPLIED BIO MATERIALS 2019; 3:156-174. [DOI: 10.1021/acsabm.9b00799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| |
Collapse
|
15
|
Stiernet P, Lecomte P, De Winter J, Debuigne A. Ugi Three-Component Polymerization Toward Poly(α-amino amide)s. ACS Macro Lett 2019; 8:427-434. [PMID: 35651127 DOI: 10.1021/acsmacrolett.9b00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Due to their great modularity, ease of implementation, and atom economy, multicomponent reactions (MCRs) are becoming increasingly popular macromolecular engineering tools. In this context, MCRs suitable in polymer synthesis are eagerly searched for. This work demonstrates the potential of the Ugi-three component reaction (Ugi-3CR) for the design of polymers and, in particular, of poly(α-amino amide)s. A series of polymers containing amino and amido groups within their backbone were obtained through a one-pot process by reacting aliphatic or aromatic diamines, diisocyanides, and aldehydes. The impact of temperature, concentration, catalyst loading, and substrates on polymerization efficiency is discussed. A preliminary study on the thermal properties and the solution behavior of these poly(α-amino amide)s was carried out. An aliphatic-rich derivative notably showed some pH-responsiveness in water via protonation-deprotonation of its amino groups.
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, 7000 Mons, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), Research Unit “Complex and Entangled Systems: from Atoms to Materials (CESAM)”, University of Liege, Quartier Agora, 13 Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| |
Collapse
|
16
|
Wang X, Man S, Zheng J, An Z. Alkyl α-Hydroxymethyl Acrylate Monomers for Aqueous Dispersion Polymerization-Induced Self-Assembly. ACS Macro Lett 2018; 7:1461-1467. [PMID: 35651227 DOI: 10.1021/acsmacrolett.8b00839] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baylis-Hillman reaction was used to afford a series of four alkyl α-hydroxymethyl acrylates, methyl (MHMA), ethyl (EHMA), isopropyl (iPrHMA), and n-butyl (nBHMA) α-hydroxymethyl acrylate, with tunable water solubility. MHMA and EHMA with high water solubility were identified as suitable candidates for aqueous dispersion polymerization-induced self-assembly (PISA). PISA of EHMA and MHMA using poly(ethylene glycol) macromolecular chain transfer agents (PEG45-CTA and PEG113-CTA) was investigated under either thermal or photoinitiation at 40-70 °C. Photo-PISA at low temperatures provided both morphological transition and PEG45-PEHMAx block copolymers with narrow molecular weight distributions. iPrHMA with moderate water solubility was used for dispersion-emulsion polymerization with the formation of vesicles being observed.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shoukuo Man
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinwen Zheng
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Wu H, Gou Y, Wang J, Tao L. Multicomponent Reactions for Surface Modification. Macromol Rapid Commun 2018; 39:e1800064. [DOI: 10.1002/marc.201800064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
18
|
Mao T, Liu G, Wu H, Wei Y, Gou Y, Wang J, Tao L. High Throughput Preparation of UV-Protective Polymers from Essential Oil Extracts via the Biginelli Reaction. J Am Chem Soc 2018; 140:6865-6872. [PMID: 29627974 DOI: 10.1021/jacs.8b01576] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A high throughput (HTP) system has been developed to exploit new functional polymers. We synthesized 25 monomers in a mini-HTP manner through the tricomponent Biginelli reaction with high yields. The starting materials were five aldehydes extracted from essential oils. The 25 corresponding polymers were conveniently prepared via mini-HTP radical polymerization initially realizing the benefit of HTP methods to quickly fabricate sample libraries. The distinct radical scavenging ability of these Biginelli polymers was evaluated through a HTP measurement to choose the three best radical scavengers. This confirms the superiority of the HTP strategy to rapidly collect and analyze data. The selected polymers have been upgraded and screened according to different requirements for biomaterials and offer water-soluble and biocompatible copolymers that effectively protect cells from the fatal UV damage. This research is a straightforward way to establish new libraries of monomers with abundant diversity. It offers polymers with interesting functionalities. This suggests that a broader study of multicomponent reactions and HTP methods might be useful in many interdisciplinary fields. To the best of our knowledge, this is the first report of a HTP study of the Biginelli reaction to develop a promising polymeric biomaterial, which might have important implications for the organic chemistry and polymer communities.
Collapse
Affiliation(s)
- Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
19
|
Wang Z, Yu Y, Li Y, Yang L, Zhao Y, Liu G, Wei Y, Wang X, Tao L. Post-polymerization modification via the Biginelli reaction to prepare water-soluble polymer adhesives. Polym Chem 2017. [DOI: 10.1039/c7py01163f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A copolymer precursor containing the β-ketoester moiety has been modified through the Biginelli reaction to get several water-soluble adhesives which are comparable to commercial glues.
Collapse
Affiliation(s)
- Zilin Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Ying Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Yongsan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Lei Yang
- Cancer Institute & Hospital
- Peking Union Medical College & Chinese Academy of Medical Science
- Beijing
- 100021
- China
| | - Yuan Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Guoqiang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| |
Collapse
|
20
|
Wu H, Wang Z, Tao L. The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polym Chem 2017. [DOI: 10.1039/c7py01718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent utilization of the tetra-component Hantzsch reaction in polymer chemistry has been summarized.
Collapse
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhiming Wang
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|