1
|
Si C, Wang T, Gupta AK, Cordes DB, Slawin AMZ, Siegel JS, Zysman‐Colman E. Room-Temperature Multiple Phosphorescence from Functionalized Corannulenes: Temperature Sensing and Afterglow Organic Light-Emitting Diode. Angew Chem Int Ed Engl 2023; 62:e202309718. [PMID: 37656606 PMCID: PMC10953377 DOI: 10.1002/anie.202309718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1 ; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1 H ) and a lower-lying T1 (T1 L ) can be observed, while for TPXZPhCor, T1 H -dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1 H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax ) and a luminance (Lmax ) of 3.3 % and 5167 cd m-2 , respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.
Collapse
Affiliation(s)
- Changfeng Si
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Tao Wang
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - David B. Cordes
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Alexandra M. Z. Slawin
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| | - Jay S. Siegel
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Institute of Organic ChemistryAlbert Ludwig University of FreiburgAlbertstr. 2179104Freiburg
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt. AndrewsKY16 9STUK
| |
Collapse
|
2
|
Báti G, Laxmi S, Stuparu MC. Mechanochemical Synthesis of Corannulene: Scalable and Efficient Preparation of A Curved Polycyclic Aromatic Hydrocarbon under Ball Milling Conditions. CHEMSUSCHEM 2023; 16:e202301087. [PMID: 37581302 DOI: 10.1002/cssc.202301087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Corannulene, a curved polycyclic aromatic hydrocarbon, is prepared in a multigram scale through mechanochemical synthesis. Initially, a mixer mill approach is examined and found to be suitable for a gram scale synthesis. For larger scales, planetary mills are used. For instance, 15 g of corannulene could be obtained in a single milling cycle with an isolated yield of 90 %. The yields are lower when the jar rotation rate is lower or higher than 400 revolutions per minute (rpm). Cumulatively, 98 g of corannulene is produced through the ball milling-based grinding techniques. These results indicate the future potential of mechanochemistry in the rational chemical synthesis of highly curved nanocarbons such as fullerenes and carbon nanotubes.
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Shoba Laxmi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
3
|
Xu XL, Li J. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-( p-tolyl)furan, C 23H 23BrO 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C23H23BrO2, monoclinic, P21/c (no. 14), a = 24.193(4) Å, b = 5.8614(10) Å, c = 13.873(3) Å, β = 93.168(3)∘, V = 1964.3(6) Å3, Z = 4, R
gt
(F) = 0.0316, wR
ref
(F
2) = 0.0915, T = 296(2) K.
Collapse
Affiliation(s)
- Xue-Li Xu
- School of Biological and Chemical Engineering , Nanyang Institute of Technology , 473004 , Nanyang , Henan , People's Republic of China
| | - Jihong Li
- Zhang Zhongjing School of Chinese Medicine , Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| |
Collapse
|
4
|
Yu H, Li J. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C21H21BrO2, monoclinic, P21/c (no. 14), a = 22.175(2) Å, b = 5.8375(6) Å, c = 14.8729(14) Å, β = 100.936(1)°, V = 1890.3(3) Å3, Z = 4, R
gt
(F) = 0.0343, wR
ref(F
2) = 0.0839, T = 296(2) K.
Collapse
Affiliation(s)
- Haiyan Yu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology , Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering , Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Jihong Li
- Zhang Zhongjing School of Chinese Medicine , Nanyang Institute of Technology , 473004 , Nanyang , Henan , P. R. China
| |
Collapse
|
5
|
Sai Bhavani K, Anusha T, Stuparu MC, Brahman PK. Synthesis and characterization of palladium nanoparticles-corannulene nanocomposite: An anode electrocatalyst for direct oxidation of methanol in alkaline medium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
7
|
Stuparu MC. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc Chem Res 2021; 54:2858-2870. [PMID: 34115472 DOI: 10.1021/acs.accounts.1c00207] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Account describes a body of research in the design and synthesis of molecular materials prepared from corannulene. Corannulene (C20H10) is a molecular bowl of carbon that can be visualized as the hydrogen-terminated cap of buckminsterfullerene. Due to this structural resemblance, it is often referred to as a buckybowl. The bowl can invert, accept electrons, and form host-guest complexes. Due to these characteristics, corannulene presents a useful building block in materials chemistry.In macromolecular science, for example, assembly of amphiphilic copolymers carrying a hydrophobic corannulene block enables micelle formation in water. Such micellar nanostructures can host large amounts of fullerenes (C60 and C70) in their corannulene-rich core through complementarity of the curved π-surfaces. Covalent stabilization of the assembled structures then leads to the formation of robust water-soluble fullerene nanoparticles. Alternatively, use of corannulene in a polymer backbone allows for the preparation of electronic and redox-active materials. Finally, a corannulene core enables polymer chains to respond to solution temperature changes and form macroscopic fibrillar structures. In this way, the corannulene motif brings a variety of properties to the polymeric materials.In the design of non-fullerene electron acceptors, corannulene is emerging as a promising aromatic scaffold. In this regard, placement of sulfur atoms along the rim can cause an anodic shift in the molecular reduction potential. Oxidation of the sulfur atoms can further enhance this shift. Thus, a variation in the number, placement, and oxidation state of the sulfur atoms can create electron acceptors of tunable and high strengths. An advantage of this molecular design is that material solubility can also be tuned. For example, water-soluble electron acceptors can be created and are shown to improve the moisture resistance of perovskite solar cells.Host-guest complexation between corannulene and γ-cyclodextrin under flow conditions of a microfluidic chamber allows for the preparation of water-soluble nanoparticles. Due to an oligosaccharide-based sugarcoat, the nanoparticles are biocompatible while the corannulene component renders them active toward nonlinear absorption and emission properties. Together, these attributes allow the nanoparticles to be used as two-photon imaging probes in cancer cells.Finally, aromatic extension of the corannulene nucleus is seen as a potential route to nonplanar nanographenes. Typically, such endeavors rely upon gas-phase synthesis or metal-catalyzed coupling protocols. Recently, two new approaches have been established in this regard. Photochemically induced oxidative cyclization, the Mallory reaction, is shown to be a general method to access corannulenes with an extended π-framework. Alternatively, solid-state ball milling can achieve this goal in a highly efficient manner. These new protocols bring practicality and sustainability to the rapidly growing area of corannulene-based nanographenes.In essence, corannulene presents a unique building block in the construction of functional materials. In this Account, we trace our own efforts in the field and point toward the challenges and future prospects of this area of research.
Collapse
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21-Nanyang Link, 637371 Singapore
| |
Collapse
|
8
|
Khuntia H, Bhavani KS, Anusha T, Trinadh T, Stuparu MC, Brahman PK. Synthesis and characterization of corannulene-metal-organic framework support material for palladium catalyst: An excellent anode material for accelerated methanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Barát V, Eom T, Khan A, Stuparu MC. Buckybowl polymers: synthesis of corannulene-containing polymers through post-polymerization modification strategy. Polym Chem 2021. [DOI: 10.1039/d1py00664a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we explore the synthesis of methacrylate polymers carrying buckybowl corannulene as the polymer side-chain.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
10
|
Barát V, Stuparu MC. Selenium and Tellurium Derivatives of Corannulene: Serendipitous Discovery of a One-Dimensional Stereoregular Coordination Polymer Crystal Based on Te-O Backbone and Side-Chain Aromatic Array. Chemistry 2020; 26:15135-15139. [PMID: 32935415 DOI: 10.1002/chem.202003989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Monobromo-, tetrabromo-, and pentachloro-corannulene are subjected to nucleophilic substitution reactions with tolyl selenide and phenyl telluride-based nucleophiles generated in situ from the corresponding dichalcogenides. In the case of selenium nucleophile, the reaction provides moderate yields (52-77 %) of the targeted corannulene selenoethers. A subsequent oxidation of the selenium atoms proceeds smoothly to furnish corannulene selenones in 81-93 % yield. In the case of tellurides, only monosubstitution of the corannulene scaffold could be achieved albeit with concomitant oxidation of the tellerium atom. Unexpectedly, this monotelluroxide derivative of corannulene (RR'Te=O, R=Ph, R'=corannulene) is observed to form a linear coordination polymer chain in the crystalline state. In this chain, Te-O constitutes the polymer backbone around which the aromatic groups (R and R') arrange as polymer side-chains. The polymer crystal is stabilized through intramolecular π-π stacking interactions of the side-chains and intermolecular hydrogen and halogen bonding interactions with the solvent (chloroform) molecules. Interestingly, each diad of the polymer chain is racemic. Therefore, in terms of stereoregularity, the polymer chain can be described as syndiotactic.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore, 21-Nanyang Link, 637371, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
11
|
Xie F, Finney NS. Synthesis and optical properties of mono- and diaminocorannulenes. Chem Commun (Camb) 2020; 56:10525-10528. [DOI: 10.1039/d0cc03853a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple synthesis of aminocorannulenes leads to the discovery of surprising properties: tunable visible emission; solid-state fluorescence; water-soluble fluorescent corannulenes.
Collapse
Affiliation(s)
- Feifei Xie
- School of Pharmaceutical Sciences and Technology
- Health Sciences Platform
- Tianjin University
- Tianjin
- China
| | - Nathaniel S. Finney
- School of Pharmaceutical Sciences and Technology
- Health Sciences Platform
- Tianjin University
- Tianjin
- China
| |
Collapse
|
12
|
Su Z, Xie Z, Wang S, Luo N, Wang C. Direct synthesis of highly functionalized furans from donor-acceptor cyclopropanes via DBU-mediated ring expansion reactions. Org Biomol Chem 2019; 17:7342-7351. [PMID: 31334531 DOI: 10.1039/c9ob01308c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DBU-mediated, unprecedented formal ring expansion reaction of 2-acyl-3-arylcyclopropane-1,1-dicarbonitriles for the synthesis of multisubstituted furan derivatives is reported. This transformation represents the regioselective ring-opening reaction of cyclopropane-1,1-dicarbonitriles and annulation using an intramolecular addition cascade reaction protocol for the synthesis of fully substituted furans includes use of readily available starting materials, mild reaction conditions, and it is transition-metal catalyst free, has good functional tolerance, and broad substrate scope.
Collapse
Affiliation(s)
- Zhenjie Su
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, PR China.
| | | | | | | | | |
Collapse
|
13
|
Adams RD, Dhull P, Pennachio M, Petrukhina MA, Smith MD. Multiple C-H Bond Activations in Corannulene by a Dirhenium Complex. Chemistry 2019; 25:4234-4239. [PMID: 30773724 DOI: 10.1002/chem.201806405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/12/2019] [Indexed: 11/08/2022]
Abstract
The reaction of Re2 (CO)8 (μ-C6 H5 )(μ-H), 1 with corannulene (C20 H10 ) yielded the product Re2 (CO)8 (μ-H)(μ-η2 -1,2-C20 H9 ), 2 (65 % yield) containing a Re2 metalated corannulene ligand formed by loss of benzene from 1 and the activation of one of the CH bonds of the nonplanar corannulene molecule by an oxidative-addition to 1. The corannulenyl ligand has adopted a bridging η2 -σ+π coordination to the Re2 (CO)8 grouping. Compound 2 reacts with a second equivalent of 1 to yield three isomeric doubly metalated corannulene products: Re2 (CO)8 (μ-H)(μ-η2 -1,2-μ-η2 -10,11-C20 H8 )Re2 (CO)8 (μ-H), 3 (35 % yield), Re2 (CO)8 (μ-H)(μ-η2 -2,1-μ-η2 -10,11-C20 H8 )Re2 (CO)8 (μ-H), 4 (12 % yield), and Re2 (CO)8 (μ-H)(μ-η2 -1,2-μ-η2 -11,10-C20 H8 )Re2 (CO)8 (μ-H), 5 (12 % yield), by a second CH activation on a second rim double bond on the corannulene molecule. The isomers differ by the relative orientations of the coordinated Re2 (CO)8 (μ-H) groupings. All new products were characterized structurally by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Richard D Adams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Poonam Dhull
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew Pennachio
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA
| | - Marina A Petrukhina
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, 12222, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
14
|
Helms BA, Seferos DS. Virtual Issue: Designing Polymers for Use in Electrochemical Energy Storage Devices. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Van Guyse JFR, de la Rosa VR, Lund R, De Bruyne M, De Rycke R, Filippov SK, Hoogenboom R. Striking Effect of Polymer End-Group on C 60 Nanoparticle Formation by High Shear Vibrational Milling with Alkyne-Functionalized Poly(2-oxazoline)s. ACS Macro Lett 2019; 8:172-176. [PMID: 35619425 DOI: 10.1021/acsmacrolett.8b00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Buckminsterfullerene (C60) has a large potential for biomedical applications. However, the main challenge for the realization of its biomedical application potential is to overcome its extremely low water solubility. One approach is the coformulation with biocompatible water-soluble polymers, such as poly(2-oxazoline)s (PAOx), to form water-soluble C60 nanoparticles (NPs). However, uniform and defined NPs have only been obtained via a thin film hydration method or using cyclodextrin-functionalized PAOx. Here, we report the mechanochemical preparation of defined and stable C60:PAOx NPs by the introduction of a simple alkyne group as a polymer end-group. The presence of this alkyne bond is proven to be crucial in the mechanochemical synthesis of stable, defined sub-100 nm C60:PAOx NPs, with high C60 content up to 8.9 wt %.
Collapse
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Victor R. de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0371 Oslo, Norway
| | - Michiel De Bruyne
- Ghent University, Department of Biomedical Molecular Biology, 9052 Ghent, Belgium and VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9052 Ghent, Belgium
| | - Riet De Rycke
- Ghent University, Department of Biomedical Molecular Biology, 9052 Ghent, Belgium and VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9052 Ghent, Belgium
| | - Sergey K. Filippov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Petrukhina MA. From corannulene to larger carbon bowls: are they better for multiple metal encapsulation? Dalton Trans 2019; 48:5125-5130. [PMID: 30838355 DOI: 10.1039/c9dt00424f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effects of size, charge and symmetry of carbon π-bowls on their supramolecular assembly and metal ion intercalation trends are discussed.
Collapse
Affiliation(s)
- Marina A. Petrukhina
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
17
|
Kanao E, Kubo T, Naito T, Matsumoto T, Sano T, Yan M, Otsuka K. Differentiating π Interactions by Constructing Concave/Convex Surfaces Using a Bucky Bowl Molecule, Corannulene in Liquid Chromatography. Anal Chem 2018; 91:2439-2446. [DOI: 10.1021/acs.analchem.8b05260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eisuke Kanao
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toyohiro Naito
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takatoshi Matsumoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
18
|
Bouzayani B, Ben Salem R, Soulé JF, Doucet H. Synthesis of C9,C10-Diheteroarylated Phenanthrenes via Palladium-Catalyzed C-H Bond Activation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bilel Bouzayani
- Univ Rennes, CNRS, ISCR-UMR 6226; 35000 Rennes France
- Laboratoire de Chimie Organique LR 17ES08; Faculté des Sciences de Sfax; Université de Sfax; Route de la Soukra km 4 3038 Sfax Tunisia
| | - Ridha Ben Salem
- Laboratoire de Chimie Organique LR 17ES08; Faculté des Sciences de Sfax; Université de Sfax; Route de la Soukra km 4 3038 Sfax Tunisia
| | | | - Henri Doucet
- Univ Rennes, CNRS, ISCR-UMR 6226; 35000 Rennes France
| |
Collapse
|
19
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Rajeshkumar V, Neelamegam C, John L, Anandan S. Metal- and Solvent-Free Phosphine Mediated Synthesis of Multisubstituted Furans via
Intramolecular Annulation of 1, 4-Enediones. ChemistrySelect 2018. [DOI: 10.1002/slct.201802728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Venkatachalam Rajeshkumar
- Department of Chemistry; National Institute of Technology Tiruchirappalli, Tamil Nadu-; 620015 India
| | - Chinnaraj Neelamegam
- Department of Chemistry; National Institute of Technology Tiruchirappalli, Tamil Nadu-; 620015 India
| | - Lisa John
- Department of Chemistry; National Institute of Technology Tiruchirappalli, Tamil Nadu-; 620015 India
| | - Sambandam Anandan
- Department of Chemistry; National Institute of Technology Tiruchirappalli, Tamil Nadu-; 620015 India
| |
Collapse
|
21
|
Saha M, Bao YH, Zhou C. A Diindole-fused Corannulene Imide Derivative: Synthesis and Properties. CHEM LETT 2018. [DOI: 10.1246/cl.180680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mithu Saha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yue-Hua Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
22
|
Lee J, Moon HH, Paeng K, Song C. Reversible Assembly of Terpyridine Incorporated Norbornene-Based Polymer via a Ring-Opening Metathesis Polymerization and Its Self-Healing Property. Polymers (Basel) 2018; 10:E1173. [PMID: 30961098 PMCID: PMC6403875 DOI: 10.3390/polym10101173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
We induced a terpyridine moiety into a norbornene-based polymer to demonstrate its self-healing property, without an external stimulus, such as light, heat, or healing agent, using metal⁻ligand interactions. We synthesized terpyridine incorporated norbornene-based polymers using a ring-opening metathesis polymerization. The sol state of diluted polymer solutions was converted into supramolecular assembled gels, through the addition of transition metal ions (Ni2+, Co2+, Fe2+, and Zn2+). In particular, a supramolecular complex gel with Zn2+, which is a metal with a lower binding affinity, demonstrated fast self-healing properties, without any additional external stimuli, and its mechanical properties were completely recovered.
Collapse
Affiliation(s)
- Jookyeong Lee
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Hwi Hyun Moon
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Keewook Paeng
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea.
| |
Collapse
|
23
|
Zabula AV, Spisak SN, Filatov AS, Rogachev AY, Petrukhina MA. Record Alkali Metal Intercalation by Highly Charged Corannulene. Acc Chem Res 2018; 51:1541-1549. [PMID: 29874040 DOI: 10.1021/acs.accounts.8b00141] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The need for advanced energy storage technologies demands the development of new functional materials. Novel carbon-rich and carbon-based materials of different structural topologies attract significant attention in this regard. Attractive systems include a unique class of bowl-shaped polycyclic aromatic hydrocarbons that map onto fullerene surfaces and are thus often referred to as fullerene fragments, buckybowls, or π-bowls. Importantly, carbon bowls are able to acquire multiple electrons in stepwise reduction reactions producing sets of successively reduced carbanions. The resulting negatively charged π-bowls exhibit unique supramolecular assembly and metal intercalation patterns that only recently have begun to be uncovered. First, we have resolved the long-standing mystery behind the supramolecular structure formed by a highly reduced fullerene fragment called corannulene (C20H104-) with multiple lithium ions, using X-ray crystallography coupled with NMR spectroscopy and theoretical calculations. This work provided a new paradigm for lithium ion intercalation between the curved carbon π-surfaces and facilitated understanding of the lithium ion storage mechanism in carbonaceous matrices. Next, we have initiated a new research direction, an investigation of the mixed alkali metal reduction reactions using bowl-shaped corannulene as a remarkable multielectron reservoir and unique ligand with open convex and concave π-surfaces. As a result, we have revealed the cooperative effect of lithium with heavier Group 1 metals in reduction and self-assembly processes of corannulene. Moreover, we have discovered a new class of organometallic supramolecules having heterometallic cores with high nuclearity and charge such as Li3M36+ and LiM56+ (M = K, Rb, and Cs) sandwiched between two tetrareduced corannulene decks. The resulting triple-decker supramolecular assemblies, fully characterized by X-ray diffraction and spectroscopic methods, were found to exhibit a record ability of the highly charged corannulene π-surfaces to be fully engaged in intercalation of multiple metal ions. Based on this unique ability, curved π-ligands with extended carbon frameworks are expected to show remarkable potential for alkali metal storage compared to flat polycyclic arenes. Notably, a previously unseen mode of internal lithium binding revealed in the heterobimetallic sandwiches is accompanied by unprecedented negative shifts (up to -25 ppm) in 7Li NMR spectra. Based on in-depth analysis of NMR data, augmented by DFT calculations, we have rationalized the observed experimental trends and proposed the mechanism of stepwise alkali metal substitution reactions. Furthermore, we have correlated the origin of the record 7Li NMR shifts with unique electronic structures of these novel supramolecular aggregates. Herein we present comprehensive analysis of unusual structural and electronic features of remarkable heterometallic self-assemblies formed by tetrareduced corannulene, using a wealth of our recent experimental and computational results. This work uncovers unique potential of highly negatively charged bowl-shaped π-ligands for new supramolecular chemistry and materials chemistry applications.
Collapse
Affiliation(s)
- Alexander V. Zabula
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sarah N. Spisak
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander S. Filatov
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Andrey Yu. Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Marina A. Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
24
|
Nestoros E, Stuparu MC. Corannulene: a molecular bowl of carbon with multifaceted properties and diverse applications. Chem Commun (Camb) 2018; 54:6503-6519. [DOI: 10.1039/c8cc02179a] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemistry, properties and applications of corannulene are discussed.
Collapse
Affiliation(s)
- Eleni Nestoros
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences, and School of Materials Science and Engineering
- Nanyang Technological University
- 637371-Singapore
- Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences, and School of Materials Science and Engineering
- Nanyang Technological University
- 637371-Singapore
- Singapore
| |
Collapse
|