1
|
Chen X, Zhu Y, Xu Y, Rao M, Pang P, Zhang B, Xu C, Ni W, Li G, Wu J, Li M, Chen Y, Geng Y. Design of Ultra-Narrow Bandgap Polymer Acceptors for High-Sensitivity Flexible All-Polymer Short-Wavelength Infrared Photodetectors. Angew Chem Int Ed Engl 2025; 64:e202413965. [PMID: 39192743 DOI: 10.1002/anie.202413965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
All-polymer photodetectors possess unique mechanical flexibility and are ideally suitable for the application in next-generation flexible, wearable short-wavelength infrared (SWIR, 1000-2700 nm) photodetectors. However, all-polymer photodetectors commonly suffer from low sensitivity, high noise, and low photoresponse speed in the SWIR region, which significantly diminish their application potential in wearable electronics. Herein, two polymer acceptors with absorption beyond 1000 nm, namely P4TOC-DCBT and P4TOC-DCBSe, were designed and synthesized. The two polymers possess rigid structure and good conformational stability, which is beneficial for reducing energetic disorder and suppressing dark current. Owing to the efficient charge generation and ultralow noise current, the P4TOC-DCBT-based all-polymer photodetector achieved a specific detectivity (D * ${{D}^{^{\ast}}}$ ) of over 1012 Jones from 650 (visible) to 1070 nm (SWIR) under zero bias, with a response time of 1.36 μs. These are the best results for reported all-polymer SWIR photodetectors in photovoltaic mode. More significantly, the all-polymer blend films exhibit good mechanical durability, and hence the P4TOC-DCBT-based flexible all-polymer photodetectors show a small performance attenuation (<4 %) after 2000 cycles of bending to a 3 mm radius. The all-polymer flexible SWIR organic photodetectors are successfully applied in pulse signal detection, optical communication and image capture.
Collapse
Affiliation(s)
- Xiaofeng Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yu Zhu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yan Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mei Rao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Pengfei Pang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Bo Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhui Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wang Ni
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
| |
Collapse
|
2
|
A new bio-based thermosetting with amorphous state, sub-zero softening point and high curing efficiency. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Attar S, Yang R, Chen Z, Ji X, Comí M, Banerjee S, Fang L, Liu Y, Al-Hashimi M. Thiazole fused S, N-heteroacene step-ladder polymeric semiconductors for organic transistors. Chem Sci 2022; 13:12034-12044. [PMID: 36349116 PMCID: PMC9600222 DOI: 10.1039/d2sc04661j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 09/07/2024] Open
Abstract
Ladder-type thiazole-fused S,N-heteroacenes with an extended π-conjugation consisting of six (SN6-Tz) and nine (SN9-Tz) fused aromatic rings have been synthesized and fully characterized. To date, the synthesis of well-defined fused building blocks and polymers of π-conjugated organic compounds based on the thiazole moiety is a considerable synthetic challenge, due to the difficulty in their synthesis. Acceptor-donor building blocks M1 and M2 were successfully polymerized into ladder homopolymers P1-P2 and further copolymerized with a diketopyrrolopyrrole unit to afford step-ladder copolymer P3. The optical, electronic, and thermal properties, in addition to their charge transport behavior in organic thin-film transistors (OTFTs), were investigated. The results showed an interesting effect on the molecular arrangement of the thiazole-based ladder-type heteroacene in the crystal structure revealing skewed π-π-stacking, and expected to possess better p-type semiconducting performance. The polymers all possess good molecular weights and excellent thermal properties. All the polymer-based OTFT devices exhibit annealing temperature dependent performance, and among the polymers P3 exhibits the highest mobility of 0.05 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Salahuddin Attar
- Department of Chemistry, Texas A&M University at Qatar P.O. Box 23874 Doha Qatar
| | - Rui Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Zhihui Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaozhou Ji
- Department of Chemistry, Texas A&M University College Station 77843-3255 Texas USA
- Department of Chemical Engineering, Stanford University Stanford 94305 California USA
| | - Marc Comí
- Department of Chemistry, Texas A&M University at Qatar P.O. Box 23874 Doha Qatar
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University College Station 77843-3255 Texas USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University College Station 77843-3255 Texas USA
| | - Yao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar P.O. Box 23874 Doha Qatar
| |
Collapse
|
4
|
Kim H, Kang J, Park J, Ahn H, Kang IN, Jung IH. All-Polymer Photodetectors with n-Type Polymers Having Nonconjugated Spacers for Dark Current Density Reduction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeokjun Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jaehee Park
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - In-Nam Kang
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si14662, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
5
|
Fan Q, Fu H, Liu M, Oh J, Ma X, Lin FR, Yang C, Zhang F, Jen AKY. Vinylene-Inserted Asymmetric Polymer Acceptor with Absorption Approaching 1000 nm for Versatile Applications in All-Polymer Solar Cells and Photomultiplication-Type Polymeric Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26970-26977. [PMID: 35657951 DOI: 10.1021/acsami.2c02485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emerging polymerized small-molecule acceptors (PSMAs) with near-infrared (NIR) absorption have not only significantly boosted the power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs) but have also exhibited great potential for sensitive NIR polymeric photodetectors (PPDs). However, there is no report regarding PSMAs with photo-response that can approach 1000 nm, which is an important criterion for applications in NIR-responsive all-PSCs and PPDs. Herein, by unidirectionally inserting vinylene segments into a selenophene-rich polymer backbone to improve the electron-donating strength and quinoidal character, an asymmetric PSMA, namely, PY3Se-1V, was developed, which showed an extensively red-shifted absorption approaching 1000 nm. The PBDB-T:PY3Se-1V-based binary all-PSCs achieve a decent PCE of 13.2% and a record-high photocurrent density of 25.9 mA cm-2 due to the significantly broadened photo-response and efficient photon-to-electron conversion. More encouragingly, narrowband photomultiplication (PM)-type PPDs based on poly(3-hexylthiophene-2,5-diyl) (P3HT):PY3Se-1V were developed, delivering an exceptionally high external quantum efficiency of 3680% and a responsivity of 28 A W-1 at an NIR peak of 960 nm under -50 V bias, which is reported for the first time in PM-type PPDs with a response approaching 1000 nm.
Collapse
Affiliation(s)
- Qunping Fan
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Ming Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
6
|
Wang X, Gao S, Han J, Liu Z, Qiao W, Wang ZY. High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26978-26987. [PMID: 35656812 DOI: 10.1021/acsami.2c04775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reducing the dark current density and enhancing the overall performance of the device is the focal point in research for organic photodetectors. Two novel random terpolymers (P3 and P4) with different molecular weights are synthesized and evaluated as acceptors in bulk heterojunction (BHJ) polymer photodetectors. Compared with known acceptor materials, such as N2200 (P1) and F-N2200 (P2), polymer P4 has a lower lowest unoccupied molecular orbital (LUMO) energy level, favorable morphology, and good miscibility with a donor material J71, which leads to proper phase separation of the blend film and better dissociation of excitons and transport of carriers. Therefore, a considerably low dark current density (Jd) of 1.9 × 10-10 A/cm2 and a high specific detectivity (D*) of 1.8 × 1013 cm Hz1/2/W (also "Jones") at 580 nm under a -0.1 V bias are realized for the P4-based photodetector. More importantly, the device also exhibits a fast response speed (τr/τf = 1.24/1.87 μs) and a wide linear dynamic range (LDR) of 109.2 dB. This work demonstrates that high-performance all-polymer photodetectors with ideal morphology can be realized by random polymer acceptors with a fine-tuned molecular weight.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shijia Gao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Han
- Department of Materials Science and Engineering and Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhipeng Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
Tejerina L, Rapidis AG, Rickhaus M, Murto P, Genene Z, Wang E, Minotto A, Anderson HL, Cacialli F. A porphyrin pentamer as a bright emitter for NIR OLEDs. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:5929-5933. [PMID: 35517642 PMCID: PMC9009301 DOI: 10.1039/d1tc05951c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs.
Collapse
Affiliation(s)
- Lara Tejerina
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Alexandros G Rapidis
- Department Physics and Astronomy and London Centre for Nanotechnology, University College London London WC1E 6BT UK
| | - Michel Rickhaus
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Petri Murto
- Department of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Zewdneh Genene
- Department of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Alessandro Minotto
- Department Physics and Astronomy and London Centre for Nanotechnology, University College London London WC1E 6BT UK
| | - Harry L Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford Oxford OX1 3TA UK
| | - Franco Cacialli
- Department Physics and Astronomy and London Centre for Nanotechnology, University College London London WC1E 6BT UK
| |
Collapse
|
8
|
Xu J, Liu Z, Jing L, Chen J. Fabrication of PCDTBT Conductive Network via Phase Separation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5071. [PMID: 34501162 PMCID: PMC8433801 DOI: 10.3390/ma14175071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5-5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is a stable semiconducting polymer with high rigidity in its molecular chains, which makes it difficult to organize into an ordered structure and affects the device performance. Here, a PCDTBT network consisting of aggregates and nanofibers in thin films was fabricated through the phase separation of mixed PCDTBT and polyethylene glycol (PEG). Using atomic force microscopy (AFM), the effect of the blending conditions (weight ratio, solution concentration, and molecular weight) and processing conditions (substrate temperature and solvent) on the resulting phase-separated morphologies of the blend films after a selective washing procedure was studied. It was found that the phase-separated structure's transition from an island to a continuous structure occurred when the weight ratio of PCDTBT/PEG changed from 2:8 to 7:3. Increasing the solution concentration from 0.1 to 3.0 wt% led to an increase in both the height of the PCDTBT aggregate and the width of the nanofiber. When the molecular weight of the PEG was increased, the film exhibited a larger PCDTBT aggregate size. Meanwhile, denser nanofibers were found in films prepared using PCDTBT with higher molecular weight. Furthermore, the electrical characteristics of the PCDTBT network were measured using conductive AFM. Our findings suggest that phase separation plays an important role in improving the molecular chain diffusion rate and fabricating the PCDTBT network.
Collapse
Affiliation(s)
- Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| | | | | | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| |
Collapse
|
9
|
Altaqui A, Sen P, Schrickx H, Rech J, Lee JW, Escuti M, You W, Kim BJ, Kolbas R, O'Connor BT, Kudenov M. Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. SCIENCE ADVANCES 2021; 7:eabe3196. [PMID: 33658196 PMCID: PMC7929508 DOI: 10.1126/sciadv.abe3196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
Combining hyperspectral and polarimetric imaging provides a powerful sensing modality with broad applications from astronomy to biology. Existing methods rely on temporal data acquisition or snapshot imaging of spatially separated detectors. These approaches incur fundamental artifacts that degrade imaging performance. To overcome these limitations, we present a stomatopod-inspired sensor capable of snapshot hyperspectral and polarization sensing in a single pixel. The design consists of stacking polarization-sensitive organic photovoltaics (P-OPVs) and polymer retarders. Multiple spectral and polarization channels are obtained by exploiting the P-OPVs' anisotropic response and the retarders' dispersion. We show that the design can sense 15 spectral channels over a 350-nanometer bandwidth. A detector is also experimentally demonstrated, which simultaneously registers four spectral channels and three polarization channels. The sensor showcases the myriad degrees of freedom offered by organic semiconductors that are not available in inorganics and heralds a fundamentally unexplored route for simultaneous spectral and polarimetric imaging.
Collapse
Affiliation(s)
- Ali Altaqui
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
| | - Pratik Sen
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Harry Schrickx
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Jeromy Rech
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Michael Escuti
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Robert Kolbas
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA.
| | - Michael Kudenov
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Murto P, Elmas S, Méndez-Romero UA, Yin Y, Genene Z, Mone M, Andersson GG, Andersson MR, Wang E. Highly Stable Indacenodithieno[3,2- b]thiophene-Based Donor-Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications. Macromolecules 2020; 53:11106-11119. [PMID: 33583955 PMCID: PMC7872426 DOI: 10.1021/acs.macromol.0c02212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Indexed: 01/05/2023]
Abstract
Stable doping of indacenodithieno[3,2-b]thiophene (IDTT) structures enables easy color tuning and significant improvement in the charge storage capacity of electrochromic polymers, making use of their full potential as electrochromic supercapacitors and in other emerging hybrid applications. Here, the IDTT structure is copolymerized with four different donor-acceptor-donor (DAD) units, with subtle changes in their electron-donating and electron-withdrawing characters, so as to obtain four different donor-acceptor copolymers. The polymers attain important form factor requirements for electrochromic supercapacitors: desired switching between achromatic black and transparent states (L*a*b* 45.9, -3.1, -4.2/86.7, -2.2, and -2.7 for PIDTT-TBT), high optical contrast (72% for PIDTT-TBzT), and excellent electrochemical redox stability (Ired/Iox ca. 1.0 for PIDTT-EBE). Poly[indacenodithieno[3,2-b]thiophene-2,8-diyl-alt-4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-(2-hexyldecyl)-2H-benzo[d][1,2,3]triazole-7,7'-diyl] (PIDTT-EBzE) stands out as delivering simultaneously a high contrast (69%) and doping level (>100%) and specific capacitance (260 F g-1). This work introduces IDTT-based polymers as bifunctional electro-optical materials for potential use in color-tailored, color-indicating, and self-regulating smart energy systems.
Collapse
Affiliation(s)
- Petri Murto
- Department
of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sait Elmas
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Ulises A. Méndez-Romero
- Department
of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Centro
de Investigación en Materiales Avanzados S.C. (CIMAV), Unidad Monterrey, Alianza Norte
202, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Yanting Yin
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Zewdneh Genene
- Department
of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Mariza Mone
- Department
of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Gunther G. Andersson
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Mats R. Andersson
- Flinders
Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Ergang Wang
- Department
of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- School
of Materials Science and Engineering, Zhengzhou
University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Zhang B, Li Y, Ma Y, Xia R, Li X, Wan F, Shen L, Yip HL, Yuan Y, Jiang ZQ, Pan A, Yang B. Planar Heterojunction Organic Photodetectors Based on Fullerene and Non-fullerene Acceptor Bilayers for a Tunable Spectral Response. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55064-55071. [PMID: 33231418 DOI: 10.1021/acsami.0c16192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Planar heterojunction (PHJ) organic photodetectors are potentially more stable than traditional bulk heterojunction counterparts because of the absence of uncontrolled phase separation in the donor and acceptor binary blend system. This work reports a new class of PHJ organic photodetectors based on the medium-band gap fullerene C60 and low-band gap fused-ring non-fullerene acceptor ID-MeIC bilayer structure, which allows a wide range of spectral response tuning across the UV-visible-near-infrared (UV-vis-NIR) region by tailoring individual layer thickness. The C60 layer not only increases the external quantum efficiency at 745 nm by 57% but also reduces dark currents by two orders of magnitude. More importantly, the p-type poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzi] is found to be the key compound to conduct the layer-by-layer fabrication as combined with n-type ID-MeIC for higher charge extraction efficiency. In light of the above information, PHJ organic photodetectors exhibited a specific detectivity of 6.5 × 1010 Jones to detect NIR light at 745 nm under -0.1 V. The linear dynamic range was estimated to be 80 dB. This work has demonstrated a feasible approach to develop a PHJ architecture with tunable spectral response in the UV-vis-NIR range toward long-term stable organic photodetectors for potential applications in flexible and wearable biomedical sensors.
Collapse
Affiliation(s)
- Bin Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yun Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yao Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Ruoxi Xia
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Xin Li
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Fang Wan
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yongbo Yuan
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Zuo-Quan Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anlian Pan
- College of Materials Science and Engineering, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Bin Yang
- College of Materials Science and Engineering, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
Zhao Z, Li C, Shen L, Zhang X, Zhang F. Photomultiplication type organic photodetectors based on electron tunneling injection. NANOSCALE 2020; 12:1091-1099. [PMID: 31845951 DOI: 10.1039/c9nr09926c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photomultiplication (PM) type organic photodetectors (OPDs) based on electron tunneling injection are achieved with a specific structure of ITO/ZnO/PC71BM:P3HT (100 : 5, wt/wt)/Au and can work well under forward and reverse bias. A rather low dark current density of the PM type OPDs is obtained due to the large electron injection barrier of 0.7 eV from the ITO electrode or 1.1 eV from the Au electrode, as well as the absence of continuous hole transport channels in the active layers. The external quantum efficiency (EQE) spectral shape of PM type OPDs can be easily adjusted by altering the bias polarity and active layer thickness, which can be well explained by the trapped hole distribution near the ITO and Au electrodes, respectively. The PM type OPDs with 400 nm active layers exhibit the maximum EQE of 3900% and 4900% under 5 V and -5 V bias, respectively. This work firstly achieves PM type OPDs with electron-only transport properties, which has great potential to well match with other organic electronic devices.
Collapse
Affiliation(s)
- Zijin Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044, Beijing, China.
| | - Chenglong Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Liang Shen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Xiaoli Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, 100044, Beijing, China.
| |
Collapse
|
13
|
Miao J, Du M, Fang Y, Zhang X, Zhang F. Photomultiplication type all-polymer photodetectors with single carrier transport property. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9582-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Lindh EM, Lundberg P, Lanz T, Edman L. Optical analysis of light-emitting electrochemical cells. Sci Rep 2019; 9:10433. [PMID: 31320711 PMCID: PMC6639418 DOI: 10.1038/s41598-019-46860-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022] Open
Abstract
The light-emitting electrochemical cell (LEC) is a contender for emerging applications of light, primarily because it offers low-cost solution fabrication of easily functionalized device architectures. The attractive properties originate in the in-situ formation of electrochemically doped transport regions that enclose an emissive intrinsic region, but the understanding of how this intricate doping structure affects the optical performance of the LEC is largely lacking. We combine angle- and doping-dependent measurements and simulations, and demonstrate that the emission zone in our high-performance LEC is centered at ~30% of the active-layer thickness (dal) from the anode. We further find that the emission intensity and efficiency are undulating with dal, and establish that the first emission maximum at dal ~ 100 nm is largely limited by the lossy coupling of excitons to the doping regions, whereas the most prominent loss channel at the second maximum at dal ~ 300 nm is wave-guided modes.
Collapse
Affiliation(s)
- E Mattias Lindh
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187, Umeå, Sweden
| | - Petter Lundberg
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187, Umeå, Sweden
| | - Thomas Lanz
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187, Umeå, Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187, Umeå, Sweden.
| |
Collapse
|
15
|
Zhong Z, Li K, Zhang J, Ying L, Xie R, Yu G, Huang F, Cao Y. High-Performance All-Polymer Photodetectors via a Thick Photoactive Layer Strategy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14208-14214. [PMID: 30908001 DOI: 10.1021/acsami.9b02092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To achieve high detectivity in all-polymer photodetectors (all-PPDs), a thick-film photoactive layer is favored because it can effectively suppress the dark current density. However, if the photoactive layer of the film is too thick, it leads to reduced responsivity owing to increased recombination loss. We developed high-performance all-PPDs by using a narrowband-gap p-type polymer NT40 and an n-type polymer poly{[ N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'-(2,2'bithiophene)} as the photoactive layer. The high charge carrier mobility of both copolymers enabled a photoactive layer thickness of 300 nm, leading to an ultralow dark current density of 4.85 × 10-10 A cm-2, a detectivity of 2.61 × 1013 Jones, a high responsivity of 0.33 A W-1 at 720 nm, and a bias of -0.1 V. The detectivity achieved >1013 Jones in a wide range from 360 to 850 nm, which is among the highest values so far reported for all-PPDs without extra gains. More importantly, the resultant all-PPDs exhibited a high working frequency over 10 kHz associated with a large linear dynamic range. These findings demonstrate great potential for practical applications of the all-PPDs developed in this work.
Collapse
Affiliation(s)
- Zhiming Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Kang Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Jiaxin Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Ruihao Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Gang Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- South China Institute of Collaborative Innovation , Dongguan 523808 , China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
16
|
Zhong Z, Bu L, Zhu P, Xiao T, Fan B, Ying L, Lu G, Yu G, Huang F, Cao Y. Dark Current Reduction Strategy via a Layer-By-Layer Solution Process for a High-Performance All-Polymer Photodetector. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8350-8356. [PMID: 30697994 DOI: 10.1021/acsami.8b20981] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ideal bulk-heterojunction for high-performance organic photodetectors prefers a morphology with a vertically gradient component to suppress the leaking current. Here, we demonstrate an all-polymer photodetector with a segregated bulk-heterojunction active layer. This all-polymer photodetector exhibits a dramatically reduced dark current density because of its built-in charge blocking layer, with a responsivity of 0.25 A W-1 at a wavelength of approximately 600 nm and specific detectivity of 5.68 × 1012 cm Hz1/2 W-1 as calculated from the noise spectra at 1 kHz. To our knowledge, this is among the best performances reported for photodetectors based on both polymeric donor and acceptor in the photoactive layer. These findings present a facile approach to improving the specific detectivity of polymer photodetectors via a layer-by-layer solution process.
Collapse
Affiliation(s)
- Zhiming Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Laju Bu
- School of Science and Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Peng Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Tong Xiao
- School of Science and Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Baobing Fan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Guanghao Lu
- School of Science and Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Gang Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
17
|
Moon Y, Lee C, Kim H, Park J, Kim Y. Synthesis of indacenodithienothiophene-based conjugated polymers containing electron-donating/accepting comonomers and their phototransistor characteristics. Polym Chem 2019. [DOI: 10.1039/c9py01411j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IDTT-based conjugated polymers with electron-accepting comonomers exhibit higher hole mobility (10-fold) and photoresponsivity (2-fold) than those with electron-donating comonomers.
Collapse
Affiliation(s)
- Yejin Moon
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA)
- Department of Chemical Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 41566
| | - Chulyeon Lee
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA)
- Department of Chemical Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 41566
| | - Hwajeong Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA)
- Department of Chemical Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 41566
| | - Jisu Park
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA)
- Department of Chemical Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 41566
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA)
- Department of Chemical Engineering
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 41566
| |
Collapse
|
18
|
Xu J, Sandström A, Lindh EM, Yang W, Tang S, Edman L. Challenging Conventional Wisdom: Finding High-Performance Electrodes for Light-Emitting Electrochemical Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33380-33389. [PMID: 30199215 DOI: 10.1021/acsami.8b13036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The light-emitting electrochemical cell (LEC) exhibits capacity for efficient charge injection from two air-stable electrodes into a single-layer active material, which is commonly interpreted as implying that the LEC operation is independent of the electrode selection. Here, we demonstrate that this is far from the truth and that the electrode selection instead has a strong influence on the LEC performance. We systematically investigate 13 different materials for the positive anode and negative cathode in a common LEC configuration with the conjugated polymer Super Yellow as the electroactive emitter and find that Ca, Mn, Ag, Al, Cu, indium tin oxide (ITO), and Au function as the LEC cathode, whereas ITO and Ni can operate as the LEC anode. Importantly, we demonstrate that the electrochemical stability of the electrode is paramount and that particularly electrochemical oxidation of the anode can prohibit the functional LEC operation. We finally report that it appears preferable to design the device so that the heights of the injection barriers at the two electrode/active material interfaces are balanced in order to mitigate electrode-induced quenching of the light emission. As such, this study has expanded the set of air-stable electrode materials available for functional LEC operation and also established a procedure for the evaluation and design of future efficient electrode materials.
Collapse
Affiliation(s)
- Jin Xu
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-90187 Umeå , Sweden
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- School of Mechanical Engineering , Dongguan University of Technology , Dongguan 523808 , China
| | - Andreas Sandström
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-90187 Umeå , Sweden
- LunaLEC AB, Linnaeus Väg 24 , SE-901 87 Umeå , Sweden
| | - E Mattias Lindh
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-90187 Umeå , Sweden
| | - Wei Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-90187 Umeå , Sweden
- LunaLEC AB, Linnaeus Väg 24 , SE-901 87 Umeå , Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of Physics , Umeå University , SE-90187 Umeå , Sweden
- LunaLEC AB, Linnaeus Väg 24 , SE-901 87 Umeå , Sweden
| |
Collapse
|
19
|
Luo X, Tran DT, Sun H, Mi T, Kadlubowski NM, Zhao Y, Zhao K, Mei J. Bis‐isoindigos: New Electron‐Deficient Building Blocks for Constructing Conjugated Polymers with Extended Electron Delocalization. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuyi Luo
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette Indiana 47907 United States
| | - Dung T. Tran
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette Indiana 47907 United States
| | - Hong Sun
- School of Mechanical Engineering 560 Oval Drive West Lafayette Indiana 47907 United States
| | - Tianxiong Mi
- College of Chemistry and Molecular Engineering Peking University Beijing China
| | - Natalie M. Kadlubowski
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette Indiana 47907 United States
| | - Yan Zhao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette Indiana 47907 United States
| | - Kejie Zhao
- School of Mechanical Engineering 560 Oval Drive West Lafayette Indiana 47907 United States
| | - Jianguo Mei
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette Indiana 47907 United States
| |
Collapse
|
20
|
Huang J, Li Y. BN Embedded Polycyclic π-Conjugated Systems: Synthesis, Optoelectronic Properties, and Photovoltaic Applications. Front Chem 2018; 6:341. [PMID: 30131955 PMCID: PMC6090378 DOI: 10.3389/fchem.2018.00341] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023] Open
Abstract
In the periodic table of elements, boron (B, atomic number, 5) and nitrogen (N, atomic number, 7) are neighboring to the carbon (C, atomic number, 6). Thus, the total electronic number of two carbons (12) is equal to the electronic sum of one boron (5) and one nitrogen (7). Accordingly, replacing two carbons with one boron and one nitrogen in a π-conjugated structure gives an isoelectronic system, i.e., the BN perturbed π-conjugated system, comparing to their all-carbon analogs. The BN embedded π-conjugated systems have unique properties, e.g., optical absorption, emission, energy levels, bandgaps, and packing order in contrast to their all-carbon analogs and have been intensively studied in terms of novel synthesis, photophysical characterizations, and electronic applications in recent years. In this review, we try to summarize the synthesis methods, optoelectronic properties, and progress in organic photovoltaic (OPV) applications of the representative BN embedded polycyclic π-conjugated systems. Firstly, the narrative will be commenced with a general introduction to the BN units, i.e., B←N coordination bond, B-N covalent bond, and N-B←N group. Then, the representative synthesis strategies toward π-conjugated systems containing B←N coordination bond, B-N covalent bond, and N-B←N group will be summarized. Afterwards, the frontier orbital energy levels, optical absorption, packing order in solid state, charge transportation ability, and photovoltaic performances of typical BN embedded π-conjugated systems will be discussed. Finally, a prospect will be proposed on the OPV materials of BN doped π-conjugated systems, especially their potential applications to the small molecules organic solar cells.
Collapse
Affiliation(s)
- Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen, China
| | | |
Collapse
|
21
|
Li Y, Meng H, Li Y, Pang B, Luo G, Huang J. Adjusting the energy levels and bandgaps of conjugated polymers via Lewis acid–base reactions. NEW J CHEM 2018. [DOI: 10.1039/c8nj04453h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stoichiometry of the Lewis acid–base coordination between polymers and BCF and the effects on the optoelectronic properties.
Collapse
Affiliation(s)
- Yongchun Li
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Huifeng Meng
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Yuqing Li
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Bo Pang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Genggeng Luo
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Jianhua Huang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| |
Collapse
|