1
|
Mohlala RL, Rashamuse TJ, Coyanis EM. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 2024; 12:1469677. [PMID: 39359421 PMCID: PMC11445040 DOI: 10.3389/fchem.2024.1469677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods. During synthesis, MCRs provide advantages such as atom economy, recyclable catalysts, moderate conditions, preventing waste, and avoiding solvent use. MCRs also reduce the number of sequential multiple reactions to one step.
Collapse
|
2
|
Chen X, Li G, Huang Z, Luo Q, Chen T, Yang W. Synthesis of nicotinimidamides via a tandem CuAAC/ring-cleavage /cyclization/oxidation four-component reaction and their cytotoxicity. RSC Adv 2024; 14:25844-25851. [PMID: 39156748 PMCID: PMC11328002 DOI: 10.1039/d4ra04918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Nicotinamide and its derivatives, recognized as crucial drug intermediates, have been a focal point of extensive chemical modifications and rigorous pharmacological studies. Herein, a series of novel nicotinamide derivatives, nicotinimidamides, were synthesized via a tandem CuAAC/ring-cleavage/cyclization/oxidation four-component reaction procedure from O-acetyl oximes, terminal ynones, sulfonyl azides, and NH4OAc. This strategy is significantly more efficient than previously reported, and the cytotoxicity of the nicotinimidamides is also tested. This project not only exhibits a sustainable and eco-friendly domino methodology for the creation of nicotinimidamides but also presents a promising candidate for liver cancer treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Guanrong Li
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Zixin Huang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University Zhanjiang 524048 P. R. China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou 510120 China
| | - Weiguang Yang
- School of Ocean and Tropical Medicine, Guangdong Medical University Zhanjiang Guangdong 524023 China
| |
Collapse
|
3
|
Wang J, Tian T, Zhang R, Li M, Chen J, Qin A, Tang BZ. Efficient Conversion of Inert Nitriles to Multifunctional Poly(5-amino-1,2,3-triazole)s via Regioselective Click Polymerization with Azide Monomers under Ambient Conditions. J Am Chem Soc 2024; 146:6652-6664. [PMID: 38419303 DOI: 10.1021/jacs.3c12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Nitrile compounds are abundant, stable, cheap, and readily available natural and chemical industrial sources. However, the efficient conversion of nitrile monomers to functional polymers is mostly limited due to their inert reactivity, and developing efficient polymerizations based on nitrile monomers under very mild conditions is still a big challenge. In this work, a facile and powerful base-catalyzed acetonitrile-azide click polymerization was successfully established under ambient conditions. This polymerization also enjoys the merits of short reaction time (15 min), 100% atom economy, transition-metal-free catalyst system, and regioselectivity. A series of poly(5-amino-1,2,3-triazole)s (PATAs) with high weight-average molecular weights (Mw, up to 204,000) were produced in excellent yields (up to 99%). The PATAs containing tetraphenylethene (TPE) moieties exhibit unique aggregation-induced emission (AIE) characteristics, which could be used to sensitively detect Fe(III) ions with a low limit of detection (1.205 × 10-7 M) and to specifically image lysosomes of living cells. Notably, PATAs could be facilely post-modified due to their containing primary amino groups in the polymer chains even through a one-pot tandem reaction. Thus, this work not only establishes a new powerful click polymerization to convert stable nitriles but also generates a series of PATAs with versatile properties for diverse applications.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rongyuan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK), Shenzhen, Guangdong 518172, China
| | - Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK), Shenzhen, Guangdong 518172, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Alsolami ES, Alorfi HS, Alamry KA, Hussein MA. One-pot multicomponent polymerization towards heterocyclic polymers: a mini review. RSC Adv 2024; 14:1757-1781. [PMID: 38192311 PMCID: PMC10772543 DOI: 10.1039/d3ra07278a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Multicomponent polymerization (MCP) is an innovative field related to polymer-based chemistry that offers numerous advantages derived from multicomponent reactions (MCRs). One of the key advantages of MCP is its ability to achieve high efficiency. Additionally, MCP offers other advantages, including operational simplicity, mild reaction conditions, and atom economy. MCP is a versatile technique that is used for synthesizing a wide range of analogs from several classes of heterocyclic compounds. The ring structures of heterocyclic polymers give them different mechanical, photophysical, and electrical properties to other types of polymers. Because of their unique properties, heterocyclic polymers have been widely utilized in various significant applications. MCRs are a type of chemical reaction that can be used to synthesize a wide variety of compounds in a single pot, which allows researchers to quickly assemble libraries of compounds. The development of MCPs from MCRs has made it easier to access a library of polymers with tunable structures. However, MCPs related to alkynes or acetylene triple bonds have more potential. In this review study, we provide an overview of the synthesis of heteroatom-functional polymers and alkyne-based development or other reactions such as Cu-catalyzed, catalyst-free, MCCP, MCTPs, green monomers, A3 coupling reactions, Passerini reactions, and sequence- and controlled-multicomponent polymerization. The up-to-date progress provides a convenient and efficient kind of approach related to heteroatoms and MCP synthesis, and perspectives in terms of future directions are also discussed in the study.
Collapse
Affiliation(s)
- Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Hajar S Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
5
|
Yue TJ, Ren WM, Lu XB. Copolymerization Involving Sulfur-Containing Monomers. Chem Rev 2023; 123:14038-14083. [PMID: 37917384 DOI: 10.1021/acs.chemrev.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.
Collapse
Affiliation(s)
- Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| |
Collapse
|
6
|
Metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide towards highly substituted and functional poly(cyclopentadiene). Sci China Chem 2023. [DOI: 10.1007/s11426-022-1467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Ma C, Han T, Efstathiou S, Marathianos A, Houck HA, Haddleton DM. Aggregation-Induced Emission Poly(meth)acrylates for Photopatterning via Wavelength-Dependent Visible-Light-Regulated Controlled Radical Polymerization in Batch and Flow Conditions. Macromolecules 2022; 55:9908-9917. [DOI: 10.1021/acs.macromol.2c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/04/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Spyridon Efstathiou
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Arkadios Marathianos
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hannes A. Houck
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Lu Q, zhang D, Xu F, He G, Qian J, Xia J. Porous fluorescent polyaminocarbazole synthesis and their sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Chen Q, Ye J, Zhu L, Luo J, Cao X, Zhang Z. Organocatalytic multicomponent polymerization of bis(aziridine)s, diols, and tosyl isocyanate toward poly(sulfonamide urethane)s. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Chen T, Ye F, Hu R, Tang BZ. Multicomponent Polymerizations of Isocyanides, Aldehydes, and 2-Aminopyridine toward Imidazo[1,2- a]pyridine-Containing Fused Heterocyclic Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Ye
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
11
|
Catalyst-free multicomponent polymerization of sulfonyl azide, aldehyde and cyclic amino acids toward zwitterionic and amphiphilic poly(N-sulfonyl amidine) as nanocatalyst precursor. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Wang X, Han T, Gong J, Alam P, Zhang H, Lam JWY, Tang BZ. Diversity-Oriented Synthesis of Functional Polymers with Multisubstituted Small Heterocycles by Facile Stereoselective Multicomponent Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinnan Wang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junyi Gong
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Parvej Alam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu, Hangzhou 310027, China
| | - Jacky W. Y. Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong 518172, China
| |
Collapse
|
13
|
Wang Z, Mathew A, Liu H. Silsesquioxane-based porous polymer derived from organic chromophore with AIE characteristics for selective detection of 2,4-dinitrophenol and Ru3+. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Reddy SR, Jayakumar J. Cu-Catalysed tandem reactions for building poly hetero atom heterocycles-green chemistry tool. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Of late, regio-selective tandem reactions are given much attention due to the formation of several multiple bonds in a single synthetic operation, avoids altering the reaction conditions, isolation of the intermediates during the reaction, reduces the production of toxic waste to the environment and can produce highly complex organic molecules with desired selectivity. Though, it requires the well-built knowledge for optimization of the process, it permits to make the complex organic molecules with least number of steps, and it has eventually made great interest and inspiration to the upcoming organic chemists. Presentation of current book chapter presents the Cu-Catalysed tandem reactions for building poly hetero atom heterocyclic compounds via green approach.
Collapse
Affiliation(s)
| | - Jyothylakshmi Jayakumar
- Department of Chemistry , Vellore Institute of Technology , Vellore , Tamil Nadu , 632014 , India
| |
Collapse
|
15
|
He B, Huang J, Zhang J, Liu X, Wang D, Sung HHY, Liu Y, Qin A, Lam JWY, Tang BZ. In-situ generation of poly(quinolizine)s via catalyst-free polyannulations of activated diyne and pyridines. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Wang Y, Zhu L, Chen W, Zhou Z, Zhang Z, Hadjichristidis N. Bimetallic Cu(I)/Rh(II) Relay Catalysis for Multicomponent Polymerization through Carbene Intermediates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wenhao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhi Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
17
|
Arslan M. Multicomponent approach for the synthesis of functional copolymers via tandem polycondensations of isatoic anhydride, bisaldehydes and bisprimary amines in trifluoroethanol. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li J, Zhao Y, Yang J, Li R, Cao Z, Wan X. Ferric Sulphate/Potassium Bisulfate Promoted Facile Synthesis of
N
‐Sulfonylimidates from a Multi‐Component Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingjing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jinwei Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
19
|
Lee IH, Bang KT, Yang HS, Choi TL. Recent Advances in Diversity-Oriented Polymerization Using Cu-Catalyzed Multicomponent Reactions. Macromol Rapid Commun 2021; 43:e2100642. [PMID: 34715722 DOI: 10.1002/marc.202100642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Diversification of polymer structures is important for imparting various properties and functions to polymers, so as to realize novel applications of these polymers. In this regard, diversity-oriented polymerization (DOP) is a powerful synthetic strategy for producing diverse and complex polymer structures. Multicomponent polymerization (MCP) is a key method for realizing DOP owing to its combinatorial features and high efficiency. Among the MCP methods, Cu-catalyzed MCP (Cu-MCP) has recently paved the way for DOP by overcoming the synthetic challenges of the previous MCP methods. Here the emergence and progress of Cu-MCP, its current challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon, 16499, Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hee-Seong Yang
- Department of Energy System Research, Ajou University, Suwon, 16499, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
20
|
Luo X, Zhao Y, Tao S, Yang ZT, Luo H, Yang W. A simple and efficient copper-catalyzed three-component reaction to synthesize ( Z)-1,2-dihydro-2-iminoquinolines. RSC Adv 2021; 11:31152-31158. [PMID: 35496874 PMCID: PMC9041411 DOI: 10.1039/d1ra06330h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
A operationally simple synthesis of (Z)-1,2-dihydro-2-iminoquinolines that proceeds under mild conditions is achieved by copper-catalyzed reaction of 1-(2-aminophenyl)ethan-1-ones, sulfonyl azides and terminal ynones. In particular, the reaction goes through a base-free CuAAC/ring-opening process to obtain the Z-configured products due to hydrogen bonding.
Collapse
Affiliation(s)
- Xiai Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Department of Pharmacy, Hunan University of Medicine Huaihua 418000 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Susu Tao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zhong-Tao Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
21
|
Zhao Y, Zhou Z, Liu L, Chen M, Yang W, Chen Q, Gardiner MG, Banwell MG. The Copper-Catalyzed Reaction of 2-(1-Hydroxyprop-2-yn-1-yl)phenols with Sulfonyl Azides Leading to C3-Unsubstituted N-Sulfonyl-2-iminocoumarins. J Org Chem 2021; 86:9155-9162. [PMID: 34137260 DOI: 10.1021/acs.joc.1c00331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An operationally simple synthesis of Z-configured and C3-unsubstituted N-sulfonyl-2-iminocoumarins (e.g., 8a) that proceeds under mild conditions is achieved by reacting 2-(1-hydroxyprop-2-yn-1-yl)phenols (e.g., 6a) with sulfonyl azides (e.g., 7a). The cascade process involved likely starts with a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. This is followed by ring-opening of the resulting metalated triazole (with accompanying loss of nitrogen), reaction of the ensuing ketenimine with the pendant phenolic hydroxyl group, and finally dehydration of the (Z)-N-(4-hydroxychroman-2-ylidene)sulfonamide so formed.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lvling Liu
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China
| | - Man Chen
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,The Marine Biomedical Research Institute of Guangdong, Zhanjiang, Guangdong 524023, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, Guangdong 524023, China
| | - Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan UniversityGuangzhou/Zhuhai, 510632/519070, China
| | - Michael G Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra 2601, Australia
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.,Institute for Advanced and Applied Chemical Synthesis, Jinan UniversityGuangzhou/Zhuhai, 510632/519070, China.,Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
22
|
Zhao Y, Zhou Z, Chen M, Yang W. Copper-Catalyzed One-Pot Synthesis of N-Sulfonyl Amidines from Sulfonyl Hydrazine, Terminal Alkynes and Sulfonyl Azides. Molecules 2021; 26:3700. [PMID: 34204392 PMCID: PMC8235413 DOI: 10.3390/molecules26123700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
N-Sulfonyl amidines are developed from a Cu-catalyzed three-component reaction from sulfonyl hydrazines, terminal alkynes and sulfonyl azides in toluene at room temperature. Particularly, the intermediate N-sulfonylketenimines was generated via a CuAAC/ring-opening procedure and took a nucleophilic addition with the weak nucleophile sulfonyl hydrazines. In addition, the stability of the product was tested by a HNMR spectrometer.
Collapse
Affiliation(s)
| | | | | | - Weiguang Yang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (Y.Z.); (Z.Z.); (M.C.)
| |
Collapse
|
23
|
Bang KT, Kim H, Kang SY, Bhaumik A, Ahn S, Yun N, Choi TL. Constructing a Library of Doubly Grafted Polymers by a One-Shot Cu-Catalyzed Multicomponent Grafting Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ki-Taek Bang
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Hyunseok Kim
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Atanu Bhaumik
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Sojeong Ahn
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Namkyu Yun
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| |
Collapse
|
24
|
Zhao Y, Li L, Zhou Z, Chen M, Yang W, Luo H. Copper catalyzed five-component domino strategy for the synthesis of nicotinimidamides. Org Biomol Chem 2021; 19:3868-3872. [PMID: 33949559 DOI: 10.1039/d1ob00162k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A library of medicinally and synthetically important nicotinimidamides was synthesized by a copper-catalyzed multicomponent domino reaction of oxime esters, terminal ynones, sulfonyl azides, aryl aldehydes and acetic ammonium. Its synthetic pathway involves the formation of a highly reactive N-sulfonyl acetylketenimine, characterized by high selectivity, combinations of potential nucleophiles and electrophiles, mild reaction conditions and a wide substrate scope, and is a rare five-component example of a CuAAC/ring-opening reaction.
Collapse
Affiliation(s)
- Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Man Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China. and The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China and Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
| |
Collapse
|
25
|
Zeng Y, Zhu C, Tao L. Stimuli-Responsive Multifunctional Phenylboronic Acid Polymers Via Multicomponent Reactions: From Synthesis to Application. Macromol Rapid Commun 2021; 42:e2100022. [PMID: 33713503 DOI: 10.1002/marc.202100022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Stimuli-responsive polymers undergo changes under different environmental conditions. Among them, phenylboronic acid (PBA) containing polymers (PBA-polymers) are unique, because they can selectively react with diols to generate borates that are sensitive to pH, sugars, and H2 O2 , and can be effectively used to synthesize smart drug carriers and self-healing hydrogels. Recently, multifunctional PBA-polymers (MF-PBA-polymers) have been developed using multicomponent reactions (MCRs) to introduce PBA groups into polymer structures. These MF-PBA-polymers have features similar to those of traditional PBA-polymers; moreover, they exhibit additional properties, such as fluorescence, antimicrobial activity, and antioxidant capability, when different MCRs are used. In this mini review, the preparation of these MF-PBA-polymers are summarized and the new properties/functions that have been introduced into these polymers using different MCRs are discussed. The uses of these MF-PBA-polymers as fluorescent cell anticoagulants, drug carriers, and gelators of functional self-healing hydrogels have been discussed. Additionally, the challenges encountered during their preparation are discussed and also the future developments in this field are touched upon.
Collapse
Affiliation(s)
- Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chongyu Zhu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Yang W, Zhao Y, Zhou Z, Li L, Cui L, Luo H. Preparation of 1,2-substituted benzimidazoles via a copper-catalyzed three component coupling reaction. RSC Adv 2021; 11:8701-8707. [PMID: 35423384 PMCID: PMC8695204 DOI: 10.1039/d1ra00650a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
1,2-Substituted benzimidazoles were prepared by simply stirring a mixture of copper catalysts, N-substituted o-phenylenediamines, sulfonyl azides and terminal alkynes. Particularly, the intermediate N-sulfonylketenimine occurred with two nucleophilic addition and the sulfonyl group was eliminated via cyclization. In a way, sulfonyl azides and copper catalysts activated the terminal alkynes to synthesize benzimidazoles.
Collapse
Affiliation(s)
- Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zitong Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
27
|
Yang G, Liang J, Hu X, Liu M, Zhang X, Wei Y. Recent Advances on Fabrication of Polymeric Composites Based on Multicomponent Reactions for Bioimaging and Environmental Pollutant Removal. Macromol Rapid Commun 2021; 42:e2000563. [PMID: 33543565 DOI: 10.1002/marc.202000563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/08/2020] [Indexed: 12/30/2022]
Abstract
As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jie Liang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Huang Y, Xu L, Hu R, Tang BZ. Cu(I)-Catalyzed Heterogeneous Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and NH4Cl. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuzhang Huang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Liguo Xu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology (SCUT), Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
- AIE Institute, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Liu G, Pan R, Wei Y, Tao L. The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromol Rapid Commun 2020; 42:e2000459. [PMID: 33006198 DOI: 10.1002/marc.202000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The Hantzcsh reaction is a robust four-component reaction for the efficient generation of 1,4-dihydropyridine (1,4-DHP) derivatives. Recently, this reaction has been introduced into polymer chemistry in order to develop polymers having 1,4-DHP structures in the main and/or side chains. The 1,4-DHP groups confer new properties/functions to the polymers. This mini-review summarizes the recent studies on the development of new functional polymers by using the Hantzsch reaction. Several synthetic approaches, including polycondensation, post-polymerization modification (PPM), monomer to polymer strategy, and one-pot strategy are introduced; different applications (protein conjugation, formaldehyde detection, drug carrier, and anti-bacterial adhesion) of the resulting polymers are emphasized. Meanwhile, the future development of the Hantzsch reaction in exploring new functional polymers is also discussed.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruihao Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
30
|
Su X, Gao Q, Wang D, Han T, Tang BZ. One-Step Multicomponent Polymerizations for the Synthesis of Multifunctional AIE Polymers. Macromol Rapid Commun 2020; 42:e2000471. [PMID: 33000896 DOI: 10.1002/marc.202000471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Indexed: 01/01/2023]
Abstract
As a new class of functional luminescent materials, polymers with aggregation-induced emission (AIE) feature attract much attention because of their advantages of efficient solid-state fluorescence, excellent processability, structural diversity, and multifunctionalities. Among all polymerization methods toward AIE polymers, multicomponent polymerizations (MCPs) exhibit the merits of simple operation, good atom economy, high polymerization efficiency, broad functional-group tolerance, etc. In this feature article, the recent progress on the development of one-step MCPs for the synthesis of AIE polymers is highlighted. The representative functionalities of the resulting AIE polymers are illustrated. Perspectives on the challenges and future development directions of this field are also discussed.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qingqing Gao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Materials Science and Engineering, Xiamen University of Technology, Ligong Road No. 600, Jimei District, Xiamen, 361024, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
31
|
Liu X, Han T, Lam JWY, Tang BZ. Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromol Rapid Commun 2020; 42:e2000386. [DOI: 10.1002/marc.202000386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ting Han
- HKUST‐Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi‐tech Park Nanshan Shenzhen 518057 P. R. China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Centre for AIE Research College of Material Science and Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518061 P. R. China
- Center for Aggregation‐Induced Emission SCUT‐HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute Guangzhou Development District, Huangpu Guangzhou 510530 China
| |
Collapse
|
32
|
Mutlu H, Theato P. Making the Best of Polymers with Sulfur–Nitrogen Bonds: From Sources to Innovative Materials. Macromol Rapid Commun 2020; 41:e2000181. [DOI: 10.1002/marc.202000181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Hatice Mutlu
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
| | - Patrick Theato
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen D‐76344 Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Str. 18 Karlsruhe D‐76131 Germany
| |
Collapse
|
33
|
He B, Zhang J, Zhang H, Liu Z, Zou H, Hu R, Qin A, Kwok RTK, Lam JWY, Tang BZ. Catalyst-Free Multicomponent Tandem Polymerizations of Alkyne and Amines toward Nontraditional Intrinsic Luminescent Poly(aminomaleimide)s. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benzhao He
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hang Zou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rong Hu
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| |
Collapse
|
34
|
Dong R, Chen Q, Cai X, Zhang Q, Liu Z. Synthesis of fused conjugated polymers containing imidazo[2,1-b]thiazole units by multicomponent one-pot polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00680g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work describes a method for synthesis of fused cyclic conjugated polymers possessing imidazo[2,1-b]thiazole units in the main chain by reaction of heteroclyclic diazoles, dialdehydes and terminal alkyne via multicomponent one-pot processes.
Collapse
Affiliation(s)
- Ru Dong
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
- P. R. China
| | - Qi Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
- P. R. China
| | - Xuediao Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
- P. R. China
| | - Qi Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
- P. R. China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education
- Shaanxi Engineering Lab for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
- 710119 Xi'an
| |
Collapse
|
35
|
Tang X, Zhang L, Hu R, Tang BZ. Multicomponent Tandem Polymerization of Aromatic Alkynes, Carbonyl Chloride, and Fischer's Base toward Poly(diene merocyanine)s. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojuan Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Lihui Zhang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
36
|
Yan Y, Laine RM, Liu H. In Situ Methylation Transforms Aggregation‐Caused Quenching into Aggregation‐Induced Emission: Functional Porous Silsesquioxane‐Based Composites with Enhanced Near‐Infrared Emission. Chempluschem 2019; 84:1630-1637. [DOI: 10.1002/cplu.201900568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/13/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yehao Yan
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan P.R. China
| | - Richard M. Laine
- Macromolecular Science and EngineeringUniversity of Michigan Ann Arbor USA
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated MaterialsMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong University Jinan P.R. China
| |
Collapse
|
37
|
Wang J, Bai T, Chen Y, Ye C, Han T, Qin A, Ling J, Tang BZ. Palladium/Benzoic Acid-Catalyzed Regio- and Stereoselective Polymerization of Internal Diynes and Diols through C(sp 3)-H Activation. ACS Macro Lett 2019; 8:1068-1074. [PMID: 35619449 DOI: 10.1021/acsmacrolett.9b00448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-H activation has been a hot research area in organic chemistry, and the most difficult one is the C(sp3)-H activation. Although the C-H activation has been introduced to the research of synthetic polymer chemistry, the polymerization developed based on C(sp3)-H activation is rarely reported, which will enrich the tools for the preparation of functional polymers. In this work, palladium/benzoic acid catalyzed polymerization of internal diynes and diols through C(sp3)-H activation was successfully established. Regio- and stereoregular functional poly(allylic ether)s with 100% E-isomers and high weight average molecular weights (Mw up to 33200) were prepared in excellent yield (98%). The reaction mechanism was unveiled with the assistance of density functional theory calculations. Furthermore, the thin films of polymers display high refractive indices and low optical dispersions. The polymer containing tetraphenylethene moiety displays the aggregation-enhanced emission feature and could be used to generate 2D fluorescent photopattern. Thus, this work not only establishes a powerful polymerization based on C(sp3)-H activation, but also furnishes functional polymers for diverse applications.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yue Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Canbin Ye
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Qi C, Zheng C, Hu R, Tang BZ. Direct Construction of Acid-Responsive Poly(indolone)s through Multicomponent Tandem Polymerizations. ACS Macro Lett 2019; 8:569-575. [PMID: 35619365 DOI: 10.1021/acsmacrolett.9b00297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multicomponent polymerizations (MCPs) as a burgeoning field in polymer chemistry has proved to be a powerful and popular tool for the synthesis of functional polymer materials with diverse and complex structures. To explore the general applicability of MCPs and enrich the product structures of MCPs, multicomponent tandem polymerizations (MCTPs) with great synthetic simplicity and efficiency were pursued. In this work, MCTPs of N-(2-iodophenyl)-3-phenyl-N-tosylpropiolamide, aromatic terminal alkynes, and diamines were explored through combining Sonogashira coupling and Michael addition reaction in a one-pot procedure. The MCTPs could proceed efficiently and conveniently under mild conditions with Pd(PPh3)2Cl2, CuI, and i-Pr2NEt, affording 12 poly(indolone)s with unique structures and high Mws (up to 30400 g/mol) in high yields (up to 97%). The poly(indolone)s possess a unique acid-triggered fluorescence "turn-on" response which could realize specific detection of CF3SO3H from other inorganic and organic acids through a rapid acid-catalyzed reaction from enamine to ketone.
Collapse
Affiliation(s)
- Chunxuan Qi
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Chao Zheng
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|