1
|
Seitzinger CL, Lodge TP. Impact of Photoactive Monomer Location in Photoresponsive Block Copolymer/Ionic Liquid Solutions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
2
|
Seitzinger CL, Hall CC, Lodge TP. Photoreversible Order–Disorder Transitions in Block Copolymer/Ionic Liquid Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claire L. Seitzinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cecilia C. Hall
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Polarization of ionic liquid and polymer and its implications for polymerized ionic liquids: An overview towards a new theory and simulation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Mizuno H, Hashimoto K, Shigenobu K, Kokubo H, Ueno K, Watanabe M. Direct Observation of Photo-Induced Reversible Sol-Gel Transition in Block Copolymer Self-Assembly Containing an Azobenzene Ionic Liquid. Macromol Rapid Commun 2021; 42:e2100091. [PMID: 33851443 DOI: 10.1002/marc.202100091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Using atomic force microscopy, the photo-induced reversible changes in a block copolymer self-assembly containing an azobenzene ionic liquid, which undergoes sol-gel transition is directly observed. This is the first report on the sol-gel transition of an ABA-type block copolymer consisting of upper critical solution temperature (UCST)-type A blocks in a photoresponsive ionic liquid mixture. The sol-gel transition is accompanied by an order-to-disorder structural change, which subsequently induces a change in the ionic conductivity. Surprisingly, the photo-induced ionic conductivity and rheological changes occurs rapidly (≈30 s) despite the dense (≈80 wt%) polymeric system. The rapid structural change is probably attributable to the fast diffusion of the ionic liquid.
Collapse
Affiliation(s)
- Haruna Mizuno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Kei Hashimoto
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Keisuke Shigenobu
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Hisashi Kokubo
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Masayoshi Watanabe
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| |
Collapse
|
5
|
Wang L, Ma X, Wu L, Sha Y, Yu B, Lan X, Luo Y, Shi Y, Wang Y, Luo Z. Coumarin derivative trigger controlled photo-healing of ion gels and photo-controlled reversible adhesiveness. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Wang C, Dong W, Li P, Wang Y, Tu H, Tan S, Wu Y, Watanabe M. Reversible Ion-Conducting Switch by Azobenzene Molecule with Light-Controlled Sol-Gel Transitions of the PNIPAm Ion Gel. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42202-42209. [PMID: 32820633 DOI: 10.1021/acsami.0c12910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exploring a simple, on-demanding method of manipulating ionic conduction of ionic liquids with large amplitudes is a challenging task. Here, a reversible ion-conducting switch was obtained based on photoswitchable sol-gel transitions. The device was successfully applied in an electronic circuit to switch it on/off. The ion gel was prepared by directly mixing following individual components: azobenzene (Azo), poly(N-isopropylacrylamide) (PNIPAm), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]). The mixture is denoted as Azo/PNIPAm/[C2mim][NTf2]. The framework of this gel structure was particularly designed as an analogue to the physical mode of control theory: sensor/amplification/action. Light-induced isomerization of Azo acts as the light sensor to trigger the macroscopic sol-gel transition of PNIPAm assemblies. Such transition works as the amplification, which significantly affects the ionic movements, resulting in high-amplitude switching behavior. A photoswitchable ionic conductive device was demonstrated as action in this paper. Under UV irradiation, the sol-like state of Azo/PNIPAm/[C2mim][NTf2] provided a higher ion conduction (around 1 mS/cm) while being exposed to visible light, and a lower ion conduction (0.04 mS/cm) was observed in the gel state. This photoswitchable ion conductivity device was integrated to a well-designed logic gate to switch circuits on or off. This confirms the possible practical application of the sol-gel device, which outputs stable and detectable electrical signals. The research here demonstrates a simple but effective strategy to control the ionic movements, which can be applied in optoelectronic devices. The principle can be used to design different types of molecular optoelectronic switches.
Collapse
Affiliation(s)
- Caihong Wang
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Weibin Dong
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Peiqi Li
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yifan Wang
- School of Electrical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Haiyan Tu
- School of Electrical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
7
|
Wang C, Li P, Zhang S, Zhang G, Tan S, Wu Y, Watanabe M. Azobenzene Molecular Trigger Controlling Phase Transitions of PNIPAm in Ionic Liquids and Light-Controlled Adhesiveness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Peiqi Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, China
| | - Guoqiang Zhang
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
8
|
Ding L, Li Y, Cang H, Li J, Wang C, Song W. Controlled synthesis of azobenzene-containing block copolymers both in the main- and side-chain from SET-LRP polymers via ADMET polymerization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Kharel A, Hall C, Černoch P, Stepanek P, Lodge TP. Dilute Solution Properties of Poly(benzyl methacrylate) in Ionic Liquids. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aakriti Kharel
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Cecilia Hall
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 117 20, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 117 20, Czech Republic
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Hashimoto K, Hirasawa M, Kokubo H, Tamate R, Li X, Shibayama M, Watanabe M. Transport and Mechanical Properties of ABA-type Triblock Copolymer Ion Gels Correlated with Their Microstructures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kei Hashimoto
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan
| | - Manabu Hirasawa
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan
| | - Hisashi Kokubo
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan
| | - Ryota Tamate
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1, Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Xiang Li
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Chiba, Japan
| | - Mitsuhiro Shibayama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Chiba, Japan
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Kanagawa, Japan
| |
Collapse
|
11
|
Chen L, Lee HS, Zhernenkov M, Lee S. Martensitic Transformation of Close-Packed Polytypes of Block Copolymer Micelles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liwen Chen
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Han Seung Lee
- Characterization Facility, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mikhail Zhernenkov
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
12
|
Lan X, Ma X, Wang L, Shi Y, Gu Q, Wu L, Gu X, Luo Z. Self-Assembly of Diblock Copolymers Containing Thermo- and Photoresponsive Lower Critical Solution Temperature Phase Behavior Polymer with Tunable Assembly Temperature in an Ionic Liquid Mixture. ACS OMEGA 2019; 4:11229-11236. [PMID: 31460224 PMCID: PMC6648859 DOI: 10.1021/acsomega.9b01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
This work prepared a type of diblock copolymer with thermo- and photosensitivity in ionic liquids (ILs). P(N,N-dimethylacrylamide) (compatible with ILs) was prepared as one segment, while butyl acrylate (BA) and 4-phenylazophenylmethacrylate (AzoMA) were copolymerized as another segment P(AzoMA-r-BA) with stimuli responsiveness. The diblock copolymer showed tunable lower critical micellization temperature (LCMT) in two mixed imidazole ionic liquids. The value of LCMT depends on not only the conformation status of the azo group in copolymers but also the azo group content in copolymers and mixed ratio of ionic liquids. Based on this tunable LCMT, photoinduced micellization/demicellization can be achieved near room temperature by alternate irradiation with visible and ultraviolet light, and it is totally reversible.
Collapse
Affiliation(s)
- Xiaoyu Lan
- College
of Science and College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xiaofeng Ma
- College
of Science and College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Lei Wang
- College
of Science and College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Yijun Shi
- Division
of Machine Elements, Luleå University
of Technology, Luleå 97187, Sweden
| | - Qun Gu
- Department
of Chemistry, Edinboro University of Pennsylvania, 230 Scotland Rd, Edinboro 16444, United States
| | - Linlin Wu
- College
of Materials Science and Engineering, Nanjing
Tech University, Nanjing 210009, P. R. China
| | - Xiaoli Gu
- College
of Science and College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| | - Zhenyang Luo
- College
of Science and College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P. R. China
| |
Collapse
|
13
|
Ansari M, Bera R, Mondal S, Das N. Triptycene-Derived Photoresponsive Fluorescent Azo-Polymer as Chemosensor for Picric Acid Detection. ACS OMEGA 2019; 4:9383-9392. [PMID: 31460028 PMCID: PMC6648835 DOI: 10.1021/acsomega.9b00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
Two new triptycene-based azobenzene-functionalized polymers (TBAFPs) have been synthesized using the well-known Pd-catalyzed Sonogashira cross-coupling polycondensation reaction between 2,6-diethynyltriptycene and (meta or para) dibromo-azobenzenes. Enhancement of the fluorescent emission intensity was observed upon trans → cis isomerization of -N=N- linkage in TBAFPs. The cis-lifetime of TBAFP1 is rather long (greater than 2 days). The resulting materials were tested as a potential chemosensor for the detection of picric acid (PA)-a water pollutant as well as chemical constituent of explosives used in warfare. PA was found to interact strongly with TBAFPs, which led to significant quenching of the latter's fluorescence emission intensities. The binding constants are in the order of 105 M-1. TBAFPs were also able to detect PA in nanomolar concentrations.
Collapse
Affiliation(s)
- Mosim Ansari
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Ranajit Bera
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Snehasish Mondal
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| |
Collapse
|