1
|
Prasannatha B, Ganivada MN, Nalla K, Kanade SR, Jana T. Hierarchical Structures of Amino Acid Derived Polyhydroxyurethanes: Promising Candidates as Drug Carriers and Cell Adhesive Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7719-7729. [PMID: 39495894 DOI: 10.1021/acsabm.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we examined the self-assembly of a series of biodegradable and biocompatible amino acid-based polyhydroxyurethanes (PHUs), investigating the structural influence of these polymers on their self-assembly and the resulting morphological features. The presence of hydrophilic and hydrophobic segments, along with carbonyl urethane, ester, and hydroxyl groups in the PHU backbone, facilitates intermolecular hydrogen bonding, enabling the formation of self-assemblies with hierarchical nanodimensional morphologies. We determined the critical aggregation concentration (CAC) and found that it largely depends on the PHU's structure. In-depth morphological studies demonstrated that the evolution of morphology proceeds in four steps: (1) the initial formation of micelles, which act as seeds at very low concentrations, (2) the elongation of these micelles into nanorod or nanopalette shapes below the CAC range, (3) the epitaxial growth of nanofibers at the CAC, and (4) the complete formation of fibrous mats above the CAC. Additionally, these hierarchical structures were utilized for the encapsulation and release of the drug doxorubicin (DOX). We observed that 75% of the encapsulated DOX was readily released in a mildly acidic environment, similar to the physiological conditions of cancer cells. Cellular uptake studies confirmed the effective uptake of the drug-loaded nanoassemblies into the cytoplasm of cells. Our studies also confirmed that these self-assembled structures can serve as effective cell adhesive scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Santosh Raja Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Hou W, Yin X, Zhou Y, Zhou Z, Liu Z, Du J, Shi Y, Chen Y. Kinetically Controlled Preparation of Worm-like Micelles with Tunable Diameter/Length and Structural Stability. J Am Chem Soc 2024; 146:24094-24104. [PMID: 39141924 DOI: 10.1021/jacs.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Anisotropic nanoparticles such as worm-like micelles have aroused much attention due to their promising applications from templates to drug delivery. The fabrication of worm-like micelles with tunable structural stability and control over their diameter and length is of great importance but still challenging. Herein, we report a kinetically controlled ring-opening metathesis polymerization-induced self-assembly (ROMPISA) for the robust preparation of kinetically trapped worm-like micelles with tunable diameter/length at enlarged experimental windows by the rational manipulation of kinetic factors, including solvent property, temperature, and π-π stacking effects. The resultant worm structures were thermodynamically metastable and capable of excellent structural stability at room temperature due to the kinetic trapping effect. At elevated temperatures, these thermodynamically metastable worms could undergo morphology evolution into vesicular structures in a controlled manner. Moreover, the structural stability of worms could also be significantly enhanced by in situ cross-linking. Overall, this kinetically controlled ROMPISA opens a new avenue for PISA chemistry that is expected to prepare "smart" polymer materials by manipulating kinetic factors.
Collapse
Affiliation(s)
- Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiuzhe Yin
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqing Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhuo Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianzhong Du
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Jin B, Hu L, Li X. Mesogenic Ordering-Driven Self-Assembly of Liquid Crystalline Block Copolymers in Solution. Chemistry 2024; 30:e202400312. [PMID: 38454618 DOI: 10.1002/chem.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.
Collapse
Affiliation(s)
- Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
5
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Xu C, Zheng MX, Wei Y, Yuan JY. Liquid Crystalline Nanoparticles via Polymerization-Induced Self-Assembly: Morphology Evolution and Function Regulation. Chemistry 2023:e202303586. [PMID: 38079233 DOI: 10.1002/chem.202303586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 01/16/2024]
Abstract
Liquid crystalline nanoparticles (LC NPs) are a kind of polymer NPs with LC mesogens, which can form special anisotropic morphologies due to the influence of LC ordering. Owing to the stimuli-responsiveness of the LC blocks, LC NPs show abundant morphology evolution behaviors in response to external regulation. LC NPs have great application potential in nano-devices, drug delivery, special fibers and other fields. Polymerization-induced self-assembly (PISA) method can synthesize LC NPs at high solid content, reducing the harsh demand for reaction solvent of the LC polymers, being a better choice for large-scale production. In this review, we introduced recent research progress of PISA-LC NPs by dividing them into several parts according to the LC mesogen, and discussed the improvement of experimental conditions and the potential application of these polymers.
Collapse
Affiliation(s)
- Chang Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Xin Zheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Deng Z, Sun Y, Guan S, Chen A. Azobenzene-Containing Liquid Crystalline Twisted Ribbons via Polymerization-Induced Hierarchical Self-Assembly. Macromol Rapid Commun 2023; 44:e2300361. [PMID: 37534616 DOI: 10.1002/marc.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Polymerization-induced self-assembly incorporating liquid crystallization, as a polymerization-induced hierarchical self-assembly (PIHSA) method to produce polymeric particles with anisotropic morphologies facilely and efficiently, has drawn wide attention recently. However, the means of regulating the morphologies of liquid crystalline (LC) polymer assemblies still need to be explored. Herein, a route is presented to fabricate the twisted ribbons via PIHSA containing azobenzene based on poor reversible addition-fragmentation chain transfer (RAFT) control, called poorly controlled PIHSA. Cyano-4-(dodecylsulfanylthiocarbonyl)sulfanyl pentanoic acid-2-(2-pyridyldithio) ethyl ester is used as the RAFT agent with poor controllability, and the morphological evolution from ribbons to twisted ribbons can be observed in the corresponding PIHSA system. The formation mechanism of the twisted ribbons is studied systematically and the broad molecular weight distribution is considered to be the decisive factor. Moreover, the supramolecular chirality induced by symmetry breaking is also related to the twist of the ribbons. This study enriches the methods of controlling the morphologies of LC polymer particles and is helpful for further clarifying the mechanism of PIHSA.
Collapse
Affiliation(s)
- Zichao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yalan Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Song Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
8
|
Hurst PJ, Graham AA, Patterson JP. Gaining Structural Control by Modification of Polymerization Rate in Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly. ACS POLYMERS AU 2022; 2:501-509. [PMID: 36536891 PMCID: PMC9756957 DOI: 10.1021/acspolymersau.2c00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/17/2023]
Abstract
Polymerization-induced self-assembly (PISA) has become an important one pot method for the preparation of well-defined block copolymer nanoparticles. In PISA, morphology is typically controlled by changing molecular architecture and polymer concentration. However, several computational and experimental studies have suggested that changes in polymerization rate can lead to morphological differences. Here, we demonstrate that catalyst selection can be used to control morphology independent of polymer structure and concentration in ring-opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA). Slower rates of polymerization give rise to slower rates of self-assembly, resulting in denser lamellae and more 3D structures when compared to faster rates of polymerization. Our explanation for this is that the fast samples transiently exist in a nonequilibrium state as self-assembly starts at a higher solvophobic block length when compared to the slow polymerization. We expect that subsequent examples of rate variation in PISA will allow for greater control over morphological outcome.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Annissa A. Graham
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Ellis CE, Garcia-Hernandez JD, Manners I. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly. J Am Chem Soc 2022; 144:20525-20538. [DOI: 10.1021/jacs.2c09715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charlotte E. Ellis
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
| | | | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
10
|
Gan Y, Dai H, Ma Y, Cheng X, Wang Z, Zhang W. Regulating Chiral Helical Structures in Liquid-Crystalline Block Copolymers with Chiroptical Response by Synergistic Asymmetric Effects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yijing Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hongbin Dai
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yafei Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zheng M, Ye Q, Chen X, Zeng M, Song G, Zhang J, Yuan J. In situ generation and evolution of polymer toroids by liquid crystallization-assisted seeded dispersion polymerization. Chem Commun (Camb) 2022; 58:6922-6925. [PMID: 35635333 DOI: 10.1039/d1cc06709e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An effective method is presented for preparing high solid content azobenzene-containing triblock copolymer toroidal assemblies by liquid crystallization-assisted seeded dispersion polymerization. Vesicles are prepared via polymerization-induced self-assembly (PISA), and used as seeds for further chain extension. By introducing smectic liquid crystalline (LC) ordering into the core-forming block, toroids are formed in situ during the polymerization. The morphological transformation from toroids to barrels is observed under ultraviolet irradiation due to the photo-isomerization of the azobenzene mesogens. This strategy expands the scope of tunable anisotropic morphologies for potential functional nanomaterials based on a LC copolymer by seeded dispersion polymerization.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Qiquan Ye
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Xi Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P. R. China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
12
|
Wang J, Wang Y, Liu B, Fu T. Highly photosensitive furan acrylate derivatives and their solid-state photopolymerization. NEW J CHEM 2022. [DOI: 10.1039/d2nj03138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly photosensitive multifunctional furan acrylate monomers synthesized from biomass furfural can be photopolymerized into polyesters without photoinitiators and solvents.
Collapse
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Yuanlu Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Bingchen Liu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Tao Fu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| |
Collapse
|
13
|
Elter JK, Eichhorn J, Schacher FH. Polyether-Based Diblock Terpolymer Micelles with Pendant Anthracene Units-Light-Induced Crosslinking and Limitations Regarding Reversibility. Macromol Rapid Commun 2021; 42:e2100485. [PMID: 34463379 DOI: 10.1002/marc.202100485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Indexed: 11/10/2022]
Abstract
The synthesis of 9-methylanthracenyl glycidyl ether (AnthGE) as a crosslinkable monomer that can be applied in anionic ring opening polymerization is reported. Diblock terpolymers of the composition methoxy-poly(ethylene oxide)-block-poly(2-ethylhexyl glycidyl ether-co-9-methylanthracenyl glycidyl ether) (mPEO-b-P(EHGE-co-AnthGE) with 10 to 24 wt% of AnthGE are synthesized and characterized. Their micellization behavior, as well as their light-induced core-crosslinking via irradiation with UV light (λ = 365 nm) is studied. The results are compared with studies on the dimerization, and the dimer cleavage via irradiation with UV-C light (λ = 254 nm), of the same diblock terpolymer in organic solution, and the small-molecule model compound 9-methoxymethylanthracene. Differences in 1 H NMR spectra of the crosslinked or dimerized compounds and reaction kinetics of the dimerization reactions under different conditions suggest possible side reactions for the case of the core-crosslinking of micelles in aqueous solution. These side reactions limit the reversibility of the anthracene dimerization reaction in aqueous solutions, even if the anthracene molecule is encapsulated within the hydrophobic core of a polymeric micelle.
Collapse
Affiliation(s)
- Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| | - Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena, D-07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, D-07743, Germany
| |
Collapse
|
14
|
Luo X, An Z. Polymerization‐Induced Self‐Assembly
for the Preparation of Poly(
N
,
N
‐dimethylacrylamide)‐
b
‐Poly
(4‐
tert
‐butoxystyrene‐
co
‐pentafluorostyrene) Particles with Inverse Bicontinuous Phases
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xin Luo
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| |
Collapse
|
15
|
Xu XF, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Driven by the Synergistic Effects of Aromatic and Solvophobic Interactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Chen Q, Li Y, Liu M, Wu X, Shen J, Shen L. Constructing helical nanowires via polymerization-induced self-assembly. RSC Adv 2021; 11:8986-8992. [PMID: 35423399 PMCID: PMC8695331 DOI: 10.1039/d1ra00439e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
While reliable strategies for constructing block copolymer (BCP) nanowires have been developed, helical nanowires are rarely reported in polymerization-induced self-assembly (PISA). Herein, in this work, a new strategy for constructing helical nanowires was developed via PISA mediated by a fluorinated stabilizer block. Ultralong nanowires with helical structure can be readily produced in a wide range of block compositions. In addition, the generality of this strategy was well testified by expanding monomer types. The achiral BCP nano-objects underwent a morphology transition from spheres to helical nanowires during aging. We believe this work will provide a general strategy for producing helical nanowires through PISA of achiral BCPs.
Collapse
Affiliation(s)
- Qiumeng Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Yahui Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Ming Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| |
Collapse
|
17
|
Liu Y, Wu J, Hu X, Zhu N, Guo K. Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Lett 2021; 10:284-296. [PMID: 35570792 DOI: 10.1021/acsmacrolett.0c00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery and prosperous growth of synthetic polymers have presented both significant advantages and daunting challenges in the last century. To address the issues of environmental pollution and fossil consumption, recyclable, degradable, and/or biobased polymers have been given much attention in the polymer science community. This viewpoint focuses on the emerging fully chemical recyclable poly(γ-butyrolactone)-based polymers. The breakthrough from nonpolymerizable to efficient polymerization is highlighted by the benefits of the development of a series of catalysis for ring-opening polymerization of γ-butyrolactone. Subsequently, the design of γ-butyrolactone derivatives and synthesis of more recyclable polymers are summarized together with the discussions about the structure and property relationship. Finally, the remaining challenges and promising opportunities are suggested in order to provide insights into the further direction for sustainable polymers.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
18
|
Zika A, Gröhn F. Multiswitchable photoacid-hydroxyflavylium-polyelectrolyte nano-assemblies. Beilstein J Org Chem 2021; 17:166-185. [PMID: 33564327 PMCID: PMC7849232 DOI: 10.3762/bjoc.17.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Light- and pH-responsive nano-assemblies with switchable size and structure are formed by the association of a photoacid, anthocyanidin, and a linear polyelectrolyte in aqueous solution. Specifically, anionic disulfonated naphthol derivatives, neutral hydroxyflavylium, and cationic poly(allylamine) are used as building blocks for the ternary electrostatic self-assembly, forming well-defined supramolecular assemblies with tunable sizes of 50 to 500 nm. Due to the network of possible chemical reactions for the anthocyanidin and the excited-state dissociation of the photoacid upon irradiation, different ways to alter the ternary system through external triggering are accessible. The structure and trigger effects can be controlled through the component ratios of the samples. Dynamic and static light scattering (DLS, SLS) and ζ-potential measurements were applied to study the size and the stability of the particles, and information on the molecular structure was gained by UV-vis spectroscopy. Isothermal titration calorimetry (ITC) provided information on the thermodynamics and interaction forces in the supramolecular assembly formation.
Collapse
Affiliation(s)
- Alexander Zika
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
19
|
Li Y, Lu Q, Chen Q, Wu X, Shen J, Shen L. Directional effect on the fusion of ellipsoidal morphologies into nanorods and nanotubes. RSC Adv 2021; 11:1729-1735. [PMID: 35424080 PMCID: PMC8693522 DOI: 10.1039/d0ra09548f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Particle fusion is well-recognized as an important spontaneous process to produce higher-order nanostructures during morphology transition in polymerization-induced self-assembly (PISA). However, to our knowledge, the directional contact, adhesion, and fusion of adjacent nanoparticles have been rarely elucidated in PISA. Herein, a directional fusion of ellipsoidal morphologies was demonstrated during PISA of semi-fluorinated liquid-crystalline (SFLC) block copolymers. The ellipsoidal nanostructures, including micelles and vesicles, preferred to undergo a directional fusion in a head-to-head model, leading to the formation of nanorods and nanotubes, respectively. We believe the directional fusion will offer insightful guidance in PISA to the preparation of complicated functional nanostructures.
Collapse
Affiliation(s)
- Yahui Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Qunzan Lu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Qiumeng Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Xinsan Road, Longwan District Wenzhou 325001 PR China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University Wenzhou 325027 PR China
| |
Collapse
|
20
|
Kadirkhanov J, Yang CL, Chang ZX, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. In situ cross-linking polymerization-induced self-assembly not only generates cross-linked structures but also promotes morphology transition by the cross-linker. Polym Chem 2021. [DOI: 10.1039/d1py00046b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Not only cross-linked structures but also a promoting effect on morphology transition has been observed during the in situ cross-linking PISA by RAFT dispersion copolymerization of 2-(diisopropylamino)ethyl methacrylate and cystaminebismethacrylamide.
Collapse
Affiliation(s)
- Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Cheng-Lin Yang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Zi-Xuan Chang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|
21
|
Ellis CE, Fukui T, Cordoba C, Blackburn A, Manners I. Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00571e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scalable low dispersity platelets were accessed through the self-assembly of crystallizable charge-terminated PFS homopolymers. The use of surfactant counteranions, as well as increasing the self-assembly temperature, improved structure fidelity.
Collapse
Affiliation(s)
| | - Tomoya Fukui
- Department of Chemistry
- University of Victoria
- Canada
| | | | | | - Ian Manners
- Department of Chemistry
- University of Victoria
- Canada
| |
Collapse
|
22
|
Wen W, Chen A. The self-assembly of single chain Janus nanoparticles from azobenzene-containing block copolymers and reversible photoinduced morphology transitions. Polym Chem 2021. [DOI: 10.1039/d1py00223f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Azobenzene-containing liquid crystalline single chain Janus nanoparticles (LC-SCJNPs) were employed as building blocks to construct assemblies showing a reversible photoinduced morphology transition.
Collapse
Affiliation(s)
- Wei Wen
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| |
Collapse
|
23
|
Li H, Song W, Liao X, Sun R, Xie M. Ionic polyacetylene with a unique nanostructure and high stability by metathesis cyclopolymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00603g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated ionic polyacetylene was synthesized by metathesis cyclopolymerization, and self-assembled into various nanostructures, which exhibited high thermal and oxidative stability.
Collapse
Affiliation(s)
- Hongfei Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
- Department of Polymer Science and Engineering
| | - Wei Song
- Department of Polymer and Composite Material
- School of Materials Engineering
- Yancheng Institute of Technology
- Yancheng
- 224051
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
24
|
Wen W, Chen A. Influence of single chain nanoparticle stabilizers on polymerization induced hierarchical self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00145k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecularly folded single chain nanoparticles (SCNPs) with steric character are used as stabilizers to construct a polymerization-induced self-assembly (PISA) formulation for the first time.
Collapse
Affiliation(s)
- Wei Wen
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| |
Collapse
|
25
|
Wen W, Ouyang W, Guan S, Chen A. Synthesis of azobenzene-containing liquid crystalline block copolymer nanoparticles via polymerization induced hierarchical self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py01442g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A facile synthesis of non-spherical photoresponsive azobenzene-containing liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly (PIHSA).
Collapse
Affiliation(s)
- Wei Wen
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Wangqi Ouyang
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Song Guan
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| |
Collapse
|
26
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
27
|
Guan S, Chen A. Influence of Spacer Lengths on the Morphology of Biphenyl-Containing Liquid Crystalline Block Copolymer Nanoparticles via Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00959] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Song Guan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
28
|
Luo X, An Z. Polymerization‐Induced Self‐Assembly for the Synthesis of Poly(
N
,
N
‐dimethylacrylamide)‐
b
‐Poly(4‐
tert
‐butoxystyrene) Particles with Inverse Bicontinuous Phases. Macromol Rapid Commun 2020; 41:e2000209. [DOI: 10.1002/marc.202000209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/17/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Luo
- Institute of Nanochemistry and Nanobiology College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education School of Life Sciences Jilin University Changchun Jilin 130012 China
| |
Collapse
|
29
|
Zhang R, Su Z, Yan X, Huang J, Shan W, Dong X, Feng X, Lin Z, Cheng SZD. Discovery of Structural Complexity through Self‐Assembly of Molecules Containing Rodlike Components. Chemistry 2020; 26:6741-6756. [DOI: 10.1002/chem.201905432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ruimeng Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 P.R. China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xiao‐Yun Yan
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jiahao Huang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Wenpeng Shan
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xue‐Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 P.R. China
| | - Xueyan Feng
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 P.R. China
- Department of Polymer Science, College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
30
|
Shen L, Li Y, Lu Q, Qi X, Wu X, Shen J. Facile preparation of one-dimensional nanostructures through polymerization-induced self-assembly mediated by host–guest interaction. Polym Chem 2020. [DOI: 10.1039/d0py00676a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A RAFT aqueous dispersion polymerization of ferrocenylmethyl acrylate mediated by host–guest interaction was investigated and a series of peculiar one-dimensional morphologies can be readily obtained.
Collapse
Affiliation(s)
- Liangliang Shen
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Yahui Li
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Qunzan Lu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325001
- PR China
| | - Xiaoliang Qi
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325001
- PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology
- Optometry and Vision Science
- School of Ophthalmology and Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
| |
Collapse
|
31
|
Zhang WJ, Kadirkhanov J, Wang CH, Ding SG, Hong CY, Wang F, You YZ. Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking. Polym Chem 2020. [DOI: 10.1039/d0py00368a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the strategies of core-cross-linking in most of the PISA literatures (including post-polymerization cross-linking, photo-cross-linking and in situ cross-linking) and the applications of the cross-linked nano-objects.
Collapse
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Jamshid Kadirkhanov
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Chang-Hui Wang
- Department of Cardiology
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Sheng-Gang Ding
- Department of Pediatrics
- First Affiliated Hospital of Anhui Medical University
- Hefei 230026
- China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Fei Wang
- Neurosurgical Department
- The First Affiliated Hospital of USTC
- Division of Life Sciences and Medicine
- University of Science and Technology of China
- Hefei
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|