1
|
Abou-Ezze K, Llevot A, Taton D. Exploiting the Reversible Dimerization of N-Heterocyclic Carbenes to Access Dynamic Polymer Networks with an Organocatalytic Activity. ACS Macro Lett 2024; 13:1008-1015. [PMID: 39052990 DOI: 10.1021/acsmacrolett.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The capability of some N-heterocyclic carbenes (NHCs) to reversibly dimerize is exploited to access dynamic polymer networks. Benzimidazolium motifs serving as NHC precursors have thus been supported onto copolymer chains by reversible addition-fragmentation chain transfer (RAFT) copolymerization of styrene and up to 20 mol % of 4-vinylbenzyl-ethyl-benzimidazolium chloride. Molecular versions of 1,3-dialkyl benzimidazolium salts have been synthesized as models, the deprotonation of which with a strong base yields the NHC dimers in the form of tetraaminoalkenes. The crossover reaction between two distinct NHC homodimers, forming heterodimers, is then evidenced. Applying this deprotonation method to the RAFT-derived copolymers leads to polymer networks with cross-links consisting of labile dimerized NHC motifs. These networks can be subsequently decross-linked using two distinct triggers, namely, a monofunctional NHC precursor as competitor and carbon dioxide (CO2). In the latter case, regeneration of the network occurs by chemically fueling the linear copolymer bearing benzimidazolium motifs with tBuOK in the presence of trace amounts of water. The same networks can also be used as latent precursors of transient polyNHCs to catalyze the benzoin condensation upon heating. The polymer-supported organocatalysts can thus be used in successive catalytic cycles.
Collapse
Affiliation(s)
- Karine Abou-Ezze
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| | - Audrey Llevot
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, CNRS, Bordeaux-INP, UMR 5629, 16 Av. Pey Berland, 33607 Pessac Cedex, France
| |
Collapse
|
2
|
Zhang S, Chen M, You Y, Wang Y, Zhu Y. Mechanism of Interconnected Pore Formation in High Internal Phase Emulsion-Templated Polymer. ACS Macro Lett 2024; 13:903-907. [PMID: 38990053 DOI: 10.1021/acsmacrolett.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
High internal phase emulsion-templated polymer, named polyHIPE, has received widespread attention due to its great potential applications in many fields, such as separation, adsorption, heterogeneous catalysis, and sound absorption. The broad applicability is largely dependent on its adjustable opening structure. However, the question of why polyHIPE has an interconnected pore network structure is still to be discussed. Herein, different types (w/o, o/w, and o/o) of HIPEs are prepared and subsequently detected with laser scanning confocal microscopy (LSCM), and the polyHIPEs obtained by curing the HIPEs are characterized by SEM. The observations suggest that the interconnected pore formation is primarily due to the presence of the surfactant-rich phase in the film between the neighboring droplets in HIPE. The interconnected pores are generated by removal of the surfactant-rich domains in the postcuring procedure, and their sizes would be enlarged if the solubility of the surfactant in the continuous phase decreases in the curing stage.
Collapse
Affiliation(s)
- Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yijing You
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiling Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
4
|
Chen J, Gao Y, Zuo S, Mao H, Li X, Liu W, Yao C, Gui H. Monolithic Catalysts Supported by Emulsion-Templated Porous Polydivinylbenzene for Continuous Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38295287 DOI: 10.1021/acs.langmuir.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A monolithic catalyst was fabricated through an emulsion-templating method, postpolymerization modification, and in situ loading of active constituents. To achieve a high specific surface area, divinylbenzene (DVB) was solely employed as the monomer, while the porous structure was adjusted with the porogen content and the types of initiators. Then, anchor points were introduced on the pore wall through nitration and amination of the polymeric scaffold. Using a controlled "silver mirror reaction", monolithic catalysts were obtained after loading of silver nanoparticles (Ag NPs), which was verified from morphological and crystallinity characteristics. The catalytic performance of the resultant monolithic catalyst was determined with the model reduction of 4-nitrophenol (4-NP). In static catalysis, the monolithic catalyst was proved to have a reactively high apparent rate constant and a good reusability. Furthermore, a flow reactor was fabricated with the monolithic catalyst, showing a high efficiency and long-term durability for the continuous reduction of 4-NP. This work broadened the adjustment of porous structures and the subsequent application for emulsion-templated monoliths.
Collapse
Affiliation(s)
- Jieyi Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Textiles, Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China
| | - Shixiang Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huihui Mao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Haoguan Gui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Wang Y, Huang M, Yu H, Cui J, Gao J, Lou Z, Feng X, Shan W, Xiong Y. CTAB assisted evaporation-induced self-assembly to construct imidazolium-based hierarchical porous covalent organic polymers for ReO 4-/TcO 4- removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131611. [PMID: 37187123 DOI: 10.1016/j.jhazmat.2023.131611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Evaporation-induced self-assembly method (EISA) was a facile and reliable method to synthesize porous materials. Herein, we report a kind of hierarchical porous ionic liquid covalent organic polymers (HPnDNH2) under cetyltrimethylammonium bromide (CTAB) assisted by EISA for ReO4-/TcO4- removal. Unlike covalent organic frameworks (COFs), which usually needed to be prepared in a closed environment or with a long reaction time, HPnDNH2 in this study was prepared within 1 h in an open environment. It was worth noting that CTAB not only served as a soft template for forming pore, but also induced ordered structure, which was verified by SEM, TEM, and Gas sorption. Benefit from its hierarchical pore structure, HPnDNH2 exhibited higher adsorption capacity (690.0 mg g-1 for HP1DNH2 and 808.7 mg g-1 for HP1.5DNH2) and faster kinetics for ReO4-/TcO4- than 1DNH2 (without employing CTAB). Additionally, the material used to remove TcO4- from alkaline nuclear waste was seldom reported, because combining features of alkali resistance and high uptake selectivity was not easy to achieve. In this study, in the case of HP1DNH2, it displayed outstanding adsorption efficiency toward aqueous ReO4-/TcO4- in 1 mol L-1 NaOH solution (92%) and simulated Savannah River Site High-level waste (SRS HLW) melter recycle stream (98%), which could be a potentially excellent nuclear waste adsorbing material.
Collapse
Affiliation(s)
- Yuejiao Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Mengnan Huang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Haibiao Yu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Junshuo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jing Gao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhenning Lou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaogeng Feng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Weijun Shan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ying Xiong
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
6
|
Dang L, Yuan H, Wang B, Zhang J, Wang Z, Gao G. Fabrication of Swellable Organic-Inorganic Hybrid Polymers for CO 2-Assisted Hydration of Propylene Epoxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16017-16025. [PMID: 36939247 DOI: 10.1021/acsami.2c23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Swelling is a very common phenomenon in organic substances. However, the swelling behaviors of inorganic substances had rarely been reported. In this study, a new type of swellable organic-inorganic hybrid polymer (PIL@CHT) was designed and successfully synthesized through free-radical copolymerization of polymerizable phosphonium ionic liquid monomer and vinyl-functionalized hydrotalcite (CHT). The swelling behaviors of PIL@CHT in various solvents with a wide range of Hansen solubility parameters (δT) were investigated, and PIL@CHT exhibited excellent swellable capacity in the solvents with δT > 24.4 MPa1/2. The swollen state of the hybrid PIL@CHT in water presented a network structure with a diameter of approximately 8-12 μm, and CHT particles were well dispersed to the channel of PIL. PIL@CHT was applied to catalyze the CO2-assisted hydration of propylene oxide (PO), in which a cascade reaction including the cycloaddition of CO2 and PO and the subsequent hydrolysis of propylene carbonate (PC) occurred. PIL@CHT, combining the active sites of PIL and CHT, synergistically catalyzed this cascade reaction and achieved a high yield (93.0%) and selectivity (98.2%) of 1,2-propanediol (1,2-MPG) under a low H2O/PO ratio of 1.5/1. Moreover, the catalyst could be recycled seven times without any significant loss of catalytic activities and had good substrate generality.
Collapse
Affiliation(s)
- Lulu Dang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Huixia Yuan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Binshen Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jingshun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Ziyi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai 202162, China
| |
Collapse
|
7
|
Sanchooli Tazeh K, Heydari R, Fatahpour M. Synthesis of
2‐amino‐4
H
‐chromenes and spirochromenes using basic ionic liquid, 2‐hydroxyethylammonium formate as green, stable, and reusable catalyst. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kazem Sanchooli Tazeh
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Reza Heydari
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Maryam Fatahpour
- Department of Chemistry, Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| |
Collapse
|
8
|
Lin R, Yin Z, Sun Y, Zhang S. Hierarchically porous polyHIPEs fabricated via ex-situ swelling strategy towards supports for noble-metal Ag nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Hu H, Wang B, Chen B, Deng X, Gao G. Swellable poly(ionic liquid)s: Synthesis, structure-property relationships and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Baten'kin MA, Mensov SN, Polushtaytsev YV. Creation of adjacent monolithic and self‐forming porous fragments in a polymerizing layer by optical scanning stereolithography. J Appl Polym Sci 2022. [DOI: 10.1002/app.51435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxim A. Baten'kin
- G.A. Razuvaev Institute of Organometallic Chemistry Nizhny Novgorod Russia
| | - Sergey. N. Mensov
- G.A. Razuvaev Institute of Organometallic Chemistry Nizhny Novgorod Russia
- Department of Radiophysics N.I. Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia
| | | |
Collapse
|
12
|
Shirzaei F, Shaterian HR. Basic ionic liquid, 2-hydroxyethylammonium formate, catalyzed one-pot synthesis of novel 2-(phenylsulfonyl)-1H-benzo[a]pyrano[2,3-c]phenazin-3-amine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
14
|
Mudassir MA, Hussain SZ, Kousar S, Zhang H, Ansari TM, Hussain I. Hyperbranched Polyethylenimine-Tethered Multiple Emulsion-Templated Hierarchically Macroporous Poly(acrylic acid)-Al 2O 3 Nanocomposite Beads for Water Purification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27400-27410. [PMID: 34081850 DOI: 10.1021/acsami.1c03922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulsion template-guided strategy has been used to produce porous architectures with exquisite structure, tailored morphology, and exclusive features for ubiquitous applications. Notwithstanding, the practical water remediation is often marred by their transport-limited behavior and fragility. To circumvent these conundrums, we prepared hierarchically porous poly(acrylic acid)-alumina nanocomposite beads by solidifying the droplets of emulsions jointly stabilized by the organic surfactants and alumina nanoparticles. By virtue of their positive charge, the alumina nanoparticles got entrapped within the poly(acrylic acid) scaffolds that excluded the risk of secondary contamination typically observed with conventional nanocomposites. Being amenable to surface modification, the carboxyl moieties of the beaded polymer were further exploited to covalently tether branched polyethylenimine throughout the exterior and interior surface of the porous matrix via a grafting-to approach. The macropores expedite an active fluid flow and easier adsorbate transport throughout the functionalized nanocomposites whose overall higher density of positive charge over a certain pH range electrostatically attracts and effectively adsorbs the negatively charged Cr(VI) complexes and anionic congo red ions/molecules from water. This proof-of-concept synthetic approach and postsynthetic modification offer an improved mechanical robustness to these macrosized multifunctional nanocomposite beads for their easier processing, thereby paving the way for the point-of-use water purification technology development.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, United Kingdom
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Shazia Kousar
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, United Kingdom
| | - Tariq Mahmood Ansari
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| |
Collapse
|
15
|
Horowitz R, Lamson M, Cohen O, Fu TB, Cuthbert J, Matyjaszewski K, Silverstein MS. Highly efficient and tunable miktoarm stars for HIPE stabilization and polyHIPE synthesis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Falireas PG, Thomassin JM, Debuigne A. Imidazolium-catalyzed dynamic ester cross-links towards reprocessable epoxy vitrimers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wu X, Li W, Hu R, Tang BZ. Catalyst-Free Four-Component Polymerization of Propiolic Acids, Benzylamines, Organoboronic Acids, and Formaldehyde toward Functional Poly(propargylamine)s. Macromol Rapid Commun 2020; 42:e2000633. [PMID: 33314555 DOI: 10.1002/marc.202000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Indexed: 12/31/2022]
Abstract
Multicomponent polymerizations (MCPs) are a group of fascinating polymer synthesis approaches that are developed rapidly in the recent decade. As a popular alkyne-based MCP, the A3 -polycouplings of alkynes, aldehydes, and amines are developed for the synthesis of poly(propargylamine)s under the catalysis of metal catalysts. In this work, through the design of carboxylic acid group-activated alkyne monomers, a catalyst-free, four-component polymerization of propiolic acids, benzylamines, organoboronic acids, and formaldehyde is reported under mild condition at 45 °C in dichloroethane. This four-component polymerization is applicable to different monomer structures, which can afford seven poly(propargylamine)s with up to 94% yields and molecular weights of up to 13 900 g mol-1 . Moreover, the poly(propargylamine)s demonstrate good solubility and processibility, high thermal stability and light refractivity, unique photophysical property, and so on. The simple monomers, mild condition, low cost, high efficiency, and procedure simplicity of this catalyst-free four-component polymerization demonstrates an elegant example of functional polymer synthesis.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Weizhang Li
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,AIE Institute, South China University of Technology (SCUT), Guangzhou, 510530, China
| |
Collapse
|