1
|
Kantin G, Sapegin A, Dar'in D. 5-Diazo Dihydrouracils: Preparation and Some Transformations. J Org Chem 2024; 89:15197-15205. [PMID: 39344186 DOI: 10.1021/acs.joc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
An approach to a new type of diazo reagents─diazo dihydrouracils─has been developed, and various transformations of the obtained diazo heterocycles have been studied, demonstrating their high synthetic potential for obtaining structurally diverse derivatives based on the privileged dihydrouracil scaffold. The X-H insertion reactions provide high yields of a variety of 5-substituted dihydrouracils. Cyclopropanation and 1,3-dipolar cycloaddition reactions involving a carbonyl ylide intermediate have been carried out to give spiro-annulated derivatives. The limitations of the modification methods with respect to the nature of substituents on the nitrogen atoms of the diazo heterocycle have been outlined.
Collapse
Affiliation(s)
- Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Alexander Sapegin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russian Federation
| |
Collapse
|
2
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Lieberman WK, Brown ZA, Kantner DS, Jing Y, Megill E, Evans ND, Crawford MC, Jhulki I, Grose C, Jones JE, Snyder NW, Meier JL. Chemoproteomics Yields a Selective Molecular Host for Acetyl-CoA. J Am Chem Soc 2023; 145:16899-16905. [PMID: 37486078 PMCID: PMC10696595 DOI: 10.1021/jacs.3c05489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Chemoproteomic profiling is a powerful approach to define the selectivity of small molecules and endogenous metabolites with the human proteome. In addition to mechanistic studies, proteome specificity profiling also has the potential to identify new scaffolds for biomolecular sensing. Here, we report a chemoproteomics-inspired strategy for selective sensing of acetyl-CoA. First, we use chemoproteomic capture experiments to validate the N-terminal acetyltransferase NAA50 as a protein capable of differentiating acetyl-CoA and CoA. A Nanoluc-NAA50 fusion protein retains this specificity and can be used to generate a bioluminescence resonance energy transfer (BRET) signal in the presence of a CoA-linked fluorophore. This enables the development of a ligand displacement assay in which CoA metabolites are detected via their ability to bind the Nanoluc-NAA50 protein "host" and compete binding of the CoA-linked fluorophore "guest". We demonstrate that the specificity of ligand displacement reflects the molecular recognition of the NAA50 host, while the window of dynamic sensing can be controlled by tuning the binding affinity of the CoA-linked fluorophore guest. Finally, we show that the method's specificity for acetyl-CoA can be harnessed for gain-of-signal optical detection of enzyme activity and quantification of acetyl-CoA from cellular samples. Overall, our studies demonstrate the potential of harnessing insights from chemoproteomics for molecular sensing and provide a foundation for future applications in target engagement and selective metabolite detection.
Collapse
Affiliation(s)
- Whitney K Lieberman
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Zachary A Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Daniel S Kantner
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Yihang Jing
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Emily Megill
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Nya D Evans
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - McKenna C Crawford
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Isita Jhulki
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Carissa Grose
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Jane E Jones
- Protein Expression Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Abstract
Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5009 Bergen, Norway
- Department of Surgery, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
5
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
6
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
7
|
Lim KS, Reidenbach AG, Hua BK, Mason JW, Gerry CJ, Clemons PA, Coley CW. Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function. J Chem Inf Model 2022; 62:2316-2331. [PMID: 35535861 PMCID: PMC10830332 DOI: 10.1021/acs.jcim.2c00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.
Collapse
Affiliation(s)
- Katherine S Lim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jeremy W Mason
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Christopher J Gerry
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Connor W Coley
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double‐ and Single‐Stranded DNA‐Encoded Chemical Libraries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University 400044 Chongqing P. R. China
| |
Collapse
|
9
|
Li Y. Translation of DNA Sequence to Chemical Structure in DNA-Encoded Libraries. Methods Mol Biol 2022; 2541:187-194. [PMID: 36083557 DOI: 10.1007/978-1-0716-2545-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis of DEL selection results requires the generation of large DNA sequence data sets and the conversion of DNA sequence to chemical structure. SAM and BAM formats are the generic formats for storing sequence alignment results. However, such formats are not directly applicable for analysis of DEL selection results due to the lack of reference sequences. In this protocol, reference sequences are constructed from DEL structure files using the central dogma of molecular biology analogy. Enabling the use of SAM and BAM formats drastically facilitates data access while also reducing data storage requirements and permits the efficient translation of DNA sequence to chemical structure of DEL compounds.
Collapse
Affiliation(s)
- You Li
- HitGen Inc., Bldg 6, Tianfu International Bio-Town, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Chen Q, Li Y, Lin C, Chen L, Luo H, Xia S, Liu C, Cheng X, Liu C, Li J, Dou D. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e67. [PMID: 35288754 PMCID: PMC9262588 DOI: 10.1093/nar/gkac173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/02/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
DNA-encoded library (DEL) technology is a powerful tool for small molecule identification in drug discovery, yet the reported DEL selection strategies were applied primarily on protein targets in either purified form or in cellular context. To expand the application of this technology, we employed DEL selection on an RNA target HIV-1 TAR (trans-acting responsive region), but found that the majority of signals were resulted from false positive DNA–RNA binding. We thus developed an optimized selection strategy utilizing RNA patches and competitive elution to minimize unwanted DNA binding, followed by k-mer analysis and motif search to differentiate false positive signal. This optimized strategy resulted in a very clean background in a DEL selection against Escherichia coli FMN Riboswitch, and the enriched compounds were determined with double digit nanomolar binding affinity, as well as similar potency in functional FMN competition assay. These results demonstrated the feasibility of small molecule identification against RNA targets using DEL selection. The developed experimental and computational strategy provided a promising opportunity for RNA ligand screening and expanded the application of DEL selection to a much wider context in drug discovery.
Collapse
Affiliation(s)
| | | | | | - Liu Chen
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Hao Luo
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Shuai Xia
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Chuan Liu
- HitGen Inc., Shuangliu District, Chengdu, China
| | | | | | - Jin Li
- HitGen Inc., Shuangliu District, Chengdu, China
| | - Dengfeng Dou
- To whom correspondence should be addressed. Tel: +86 28 85197385 8700;
| |
Collapse
|
11
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double- and Single-Stranded DNA-Encoded Chemical Libraries. Angew Chem Int Ed Engl 2021; 61:e202115157. [PMID: 34904335 DOI: 10.1002/anie.202115157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 02/03/2023]
Abstract
The use of a proper encoding methodology is one of the most important aspects when practicing DEL technology. A "headpiece"-based double-stranded DEL encoding method is currently the most widely used for productive DEL. However, the robustness of double-stranded DEL construction conflicts with the versatility presented by single-stranded DEL applications. We here report a novel encoding method, which is based on a "reversible covalent headpiece (RCHP)". The RCHP allows reversible interconversion between double- and single-stranded DNA formats, providing an avenue to robust synthesis and allowing for the applications in distinct setups. We have validated the versatility of this encoding method with encoded self-assembled chemical library and DNA-encoded dynamic library technology. Notably, based on the RCHP-settled library construction, a unique "ternary covalent complex" mediating ligand isolation methodology against non-immobilized targets was developed.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
12
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Castan IFSF, Graham JS, Salvini CLA, Stanway-Gordon HA, Waring MJ. On the design of lead-like DNA-encoded chemical libraries. Bioorg Med Chem 2021; 43:116273. [PMID: 34147943 DOI: 10.1016/j.bmc.2021.116273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023]
Abstract
DNA-encoded libraries (DELs) are becoming an established technology for finding ligands for protein targets. We have abstracted and analysed libraries from the literature to assess the synthesis strategy, selections of reactions and monomers and their propensity to reveal hits. DELs have led to hit compounds across a range of diverse protein classes. The range of reactions and monomers utilised has been relatively limited and the hits are often higher in molecular weight than might be considered ideal. Considerations for future library designs with reference to chemical diversity and lead-like properties are discussed.
Collapse
Affiliation(s)
- Isaline F S F Castan
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica S Graham
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Catherine L A Salvini
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Harriet A Stanway-Gordon
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
14
|
Hunter JH, Anderson MJ, Castan IFSF, Graham JS, Salvini CLA, Stanway-Gordon HA, Crawford JJ, Madin A, Pairaudeau G, Waring MJ. Highly efficient on-DNA amide couplings promoted by micelle forming surfactants for the synthesis of DNA encoded libraries. Chem Sci 2021; 12:9475-9484. [PMID: 34349922 PMCID: PMC8278914 DOI: 10.1039/d1sc03007h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
DNA encoded libraries (DELs) represent powerful new technology for finding small molecule ligands for proteins and are increasingly being applied to hit finding in medicinal chemistry. Crucial to the synthesis of high quality DELs is the identification of chemical reactions for their assembly that proceed with very high conversion across a range of different substrates, under conditions compatible with DNA-tagged substrates. Many current chemistries used in DEL synthesis do not meet this requirement, resulting in libraries of low fidelity. Amide couplings are the most commonly used reaction in synthesis of screening libraries and also in DELs. The ability to carry out highly efficient, widely applicable amide couplings in DEL synthesis would therefore be highly desirable. We report a method for amide coupling using micelle forming surfactants, promoted by a modified linker, that is broadly applicable across a wide range of substrates. Most significantly, this works exceptionally well for coupling of DNA-conjugated carboxylic acids (N-to-C) with amines in solution, a procedure that is currently very inefficient. The optimisation of separate procedures for coupling of DNA-conjugated acids and amines by reagent screening and statistically driven optimisation is described. The generality of the method is illustrated by the application to a wide range of examples with unprecedented levels of conversion. The utility of the (N-to-C) coupling of DNA-conjugated acids in DEL synthesis is illustrated by the three cycle synthesis of a fully DNA-encoded compound by two cycles of coupling of an aminoester, with intermediate ester hydrolysis, followed by capping with an amine. This methodology will be of great utility in the synthesis of high fidelity DELs.
Collapse
Affiliation(s)
- James H Hunter
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Matthew J Anderson
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Isaline F S F Castan
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Jessica S Graham
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Catherine L A Salvini
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Harriet A Stanway-Gordon
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - James J Crawford
- Department of Discovery Chemistry, Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge CB4 0WG UK
| | - Garry Pairaudeau
- Exscientia Schrödinger Building, Oxford Science Park Oxford OX4 4GE UK
| | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
15
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Kölmel DK, Zhu H, Flanagan ME, Sakata SK, Harris AR, Wan J, Morgan BA. Employing Photocatalysis for the Design and Preparation of DNA‐Encoded Libraries: A Case Study. CHEM REC 2021; 21:616-630. [DOI: 10.1002/tcr.202000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Dominik K. Kölmel
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Hongyao Zhu
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Mark E. Flanagan
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Sylvie K. Sakata
- Worldwide Research and Development Pfizer Inc 10770 Science Center Drive San Diego CA 92121 United States
| | - Anthony R. Harris
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Jinqiao Wan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
| | - Barry A. Morgan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
- HitGen Pharmaceuticals Inc PO Box 88240 Houston TX 77288 United States
| |
Collapse
|
17
|
Jing Y, Montano JL, Levy M, Lopez JE, Kung PP, Richardson P, Krajewski K, Florens L, Washburn MP, Meier JL. Harnessing Ionic Selectivity in Acetyltransferase Chemoproteomic Probes. ACS Chem Biol 2021; 16:27-34. [PMID: 33373188 PMCID: PMC9093059 DOI: 10.1021/acschembio.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical proteomics provides a powerful strategy for the high-throughput assignment of enzyme function or inhibitor selectivity. However, identifying optimized probes for an enzyme family member of interest and differentiating signal from the background remain persistent challenges in the field. To address this obstacle, here we report a physiochemical discernment strategy for optimizing chemical proteomics based on the coenzyme A (CoA) cofactor. First, we synthesize a pair of CoA-based sepharose pulldown resins differentiated by a single negatively charged residue and find this change alters their capture properties in gel-based profiling experiments. Next, we integrate these probes with quantitative proteomics and benchmark analysis of "probe selectivity" versus traditional "competitive chemical proteomics." This reveals that the former is well-suited for the identification of optimized pulldown probes for specific enzyme family members, while the latter may have advantages in discovery applications. Finally, we apply our anionic CoA pulldown probe to evaluate the selectivity of a recently reported small molecule N-terminal acetyltransferase inhibitor. These studies further validate the use of physical discriminant strategies in chemoproteomic hit identification and demonstrate how CoA-based chemoproteomic probes can be used to evaluate the selectivity of small molecule protein acetyltransferase inhibitors, an emerging class of preclinical therapeutic agents.
Collapse
Affiliation(s)
- Yihang Jing
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jose L Montano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
| | - Jeffrey E Lopez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Pei-Pei Kung
- Worldwide Research and Development, Pfizer Inc., San Diego, California 92121, United States
| | - Paul Richardson
- Worldwide Research and Development, Pfizer Inc., San Diego, California 92121, United States
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
18
|
Liu S, Qi J, Lu W, Wang X, Lu X. Synthetic Studies toward DNA-Encoded Heterocycles Based on the On-DNA Formation of α,β-Unsaturated Ketones. Org Lett 2021; 23:908-913. [PMID: 33444029 DOI: 10.1021/acs.orglett.0c04118] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taking advantage of the diversity-oriented synthesis strategy with α,β-unsaturated carbonyl compounds, we have successfully established the DNA-compatible transformations for various heterocyclic scaffolds. The ring-closure reactions for pyrrole, pyrrolidine, pyrazole, pyrazoline, isoxazoline, pyridine, piperidine, cyclohexenone, and 5,8-dihydroimidazo[1,2-a]pyrimidine were elegantly demonstrated in a DNA-compatible format. These efforts paved the way for preparing DNA-encoded libraries with more extensive chemical space.
Collapse
Affiliation(s)
- Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingjing Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| |
Collapse
|
19
|
Foley TL, Burchett W, Chen Q, Flanagan ME, Kapinos B, Li X, Montgomery JI, Ratnayake AS, Zhu H, Peakman MC. Selecting Approaches for Hit Identification and Increasing Options by Building the Efficient Discovery of Actionable Chemical Matter from DNA-Encoded Libraries. SLAS DISCOVERY 2021; 26:263-280. [PMID: 33412987 DOI: 10.1177/2472555220979589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, the toolbox for discovering small-molecule therapeutic starting points has expanded considerably. Pharmaceutical researchers can now choose from technologies that, in addition to traditional high-throughput knowledge-based and diversity screening, now include the screening of fragment and fragment-like libraries, affinity selection mass spectrometry, and selection against DNA-encoded libraries (DELs). Each of these techniques has its own unique combination of advantages and limitations that makes them more, or less, suitable for different target classes or discovery objectives, such as desired mechanism of action. Layered on top of this are the constraints of the drug-hunters themselves, including budgets, timelines, and available platform capacity; each of these can play a part in dictating the hit identification strategy for a discovery program. In this article, we discuss some of the factors that we use to govern our building of a hit identification roadmap for a program and describe the increasing role that DELs are playing in our discovery strategy. Furthermore, we share our learning during our initial exploration of DEL and highlight the approaches we have evolved to maximize the value returned from DEL selections. Topics addressed include the optimization of library design and production, reagent validation, data analysis, and hit confirmation. We describe how our thinking in these areas has led us to build a DEL platform that has begun to deliver tractable matter to our global discovery portfolio.
Collapse
Affiliation(s)
| | | | - Qiuxia Chen
- Lead Generation Unit, HitGen Inc., Chengdu, Shuangliu District, China
| | | | | | - Xianyang Li
- Lead Generation Unit, HitGen Inc., Chengdu, Shuangliu District, China
| | | | | | - Hongyao Zhu
- Simulation and Modelling Sciences, Pfizer Inc., Groton, CT, USA
| | | |
Collapse
|
20
|
Koufaris C, Kirmizis A. N-Terminal Acetyltransferases Are Cancer-Essential Genes Prevalently Upregulated in Tumours. Cancers (Basel) 2020; 12:E2631. [PMID: 32942614 PMCID: PMC7565035 DOI: 10.3390/cancers12092631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
N-terminal acetylation (Nt-Ac) is an abundant eukaryotic protein modification, deposited in humans by one of seven N-terminal acetyltransferase (NAT) complexes composed of a catalytic and potentially auxiliary subunits. The involvement of NATs in cancers is being increasingly recognised, but a systematic cross-tumour assessment is currently lacking. To address this limitation, we conducted here a multi-omic data interrogation for NATs. We found that tumour genomic alterations of NATs or of their protein substrates are generally rare events, with some tumour-specific exceptions. In contrast, altered gene expression of NATs in cancers and their association with patient survival constitute a widespread cancer phenomenon. Examination of dependency screens revealed that (i), besides NAA60 and NAA80 and the NatA paralogues NAA11 and NAA16, the other ten NAT genes were within the top 80th percentile of the most dependent genes (ii); NATs act through distinct biological processes. NAA40 (NatD) emerged as a NAT with particularly interesting cancer biology and therapeutic potential, especially in liver cancer where a novel oncogenic role was supported by its increased expression in multiple studies and its association with patient survival. In conclusion, this study generated insights and data that will be of great assistance in guiding further research into the function and therapeutic potential of NATs in cancer.
Collapse
Affiliation(s)
- Costas Koufaris
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|