1
|
Mandić L, Ljubić I, Džeba I. Time-resolved spectroscopic and computational study of the initial events in doxazosin photochemistry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123595. [PMID: 37948930 DOI: 10.1016/j.saa.2023.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Doxazosin is a quinazoline derivative widely used in medicine as a drug. In this study, a combined experimental and computational approach based on the time-dependent density functional theory was used to elucidate the primary events following the photoexcitation of DOX upon interaction with light. The photophysical properties and photochemical reactivity of DOX were investigated by steady-state and time-resolved absorption and fluorescence spectroscopy. DOX in H2O in S0 is present in two prototropic forms, with the protonated form dominating (∼91 %, pKa = 6.75). The computations indicated that the most basic quinazoline nitrogen is at the position 1. Upon excitation, DOX deprotonates in the singlet excited state (pKa* = 1.31), and the decay times from the singlet excited state of 5 ns and 13 ns are attributed to the non-protonated and protonated forms of DOX, respectively. The quantum yield of fluorescence in H2O is 0.51 and 0.64 in basic media. The quantum yield of intersystem crossing along with triplet-triplet molar absorption coefficient at 520 nm and the lifetime of the triplet excited state were obtained by LFP, ΦISC = 0.17, ε520 = 11600 ± 100 M-1 cm-1 and τ = 11 μs, respectively. Furthermore, LFP enabled detection of DOX radical formed by the photoinduced intramolecular electron transfer from the benzodioxane-carbamoyl to the protonated aminoquinazoline. Computations were used to back up the assignments of the detected transients and to construct an energy diagram with all plausible photophysical and photochemical pathways. These results elucidated the mechanisms of DOX photochemistry leading to DOX photodegradation which is relevant to environmental studies. They also provided insights into the potential use of such a quinazoline derivative in other applications such as push-pull chromophores or fluorescent probes.
Collapse
Affiliation(s)
- Leo Mandić
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ljubić
- Theoretical Chemistry Group, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.
| | - Iva Džeba
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Nguyen TP, Fang M, Kim J, Wang B, Lin E, Khivansara V, Barrows N, Rivera-Cancel G, Goralski M, Cervantes CL, Xie S, Peterson JM, Povedano JM, Antczak MI, Posner BA, Harvey CJB, Naughton BT, McFadden DG, Ready JM, De Brabander JK, Nijhawan D. Inducible mismatch repair streamlines forward genetic approaches to target identification of cytotoxic small molecules. Cell Chem Biol 2023; 30:1453-1467.e8. [PMID: 37607550 PMCID: PMC10841267 DOI: 10.1016/j.chembiol.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and new therapeutic leads. In selected cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Fang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baiyun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisa Lin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal Khivansara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neha Barrows
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giomar Rivera-Cancel
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Goralski
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher L Cervantes
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanhai Xie
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Johann M Peterson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Manuel Povedano
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Monika I Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - David G McFadden
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Nguyen TP, Fang M, Kim J, Wang B, Lin E, Khivansara V, Barrows N, Rivera-Cancel G, Goralski M, Cervantes CL, Xie S, Peterson JM, Povedano JM, Antczak MI, Posner BA, McFadden DG, Ready JM, De Brabander JK, Nijhawan D. Inducible mismatch repair streamlines forward genetic approaches to target identification of cytotoxic small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529401. [PMID: 36865268 PMCID: PMC9980046 DOI: 10.1101/2023.02.21.529401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and in some cases, new therapeutic leads. In select cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.
Collapse
|
4
|
Motoyama M, Doan TH, Hibner-Kulicka P, Otake R, Lukarska M, Lohier JF, Ozawa K, Nanbu S, Alayrac C, Suzuki Y, Witulski B. Synthesis and Structure-Photophysics Evaluation of 2-N-Amino-quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chem Asian J 2021; 16:2087-2099. [PMID: 34107175 DOI: 10.1002/asia.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Indexed: 11/12/2022]
Abstract
2-N-aminoquinazolines were prepared by consecutive SN Ar functionalization. X-ray structures display the nitrogen lone pair of the 2-N-morpholino group in conjugation with the electron deficient quinazoline core and thus representing electronic push-pull systems. 2-N-aminoquinazolines show a positive solvatochromism and are fluorescent in solution and in solid state with quantum yields up to 0.73. Increase in electron donor strength of the 2-amino substituent causes a red-shift of the intramolecular charge transfer (ICT) band (300-400 nm); whereas the photoluminescence emission maxima (350-450 nm) is also red-shifted significantly along with an enhancement in photoluminescence efficiency. HOMO-LUMO energies were estimated by a combination of electrochemical and photophysical methods and correlate well to those obtained by computational methods. ICT properties are theoretically attributed to an excitation to Rydberg-MO in SAC-CI method, which can be interpreted as n-π* excitation. 7-Amino-2-N-morpholino-4-methoxyquinazoline responds to acidic conditions with significant increases in photoluminescence intensity revealing a new turn-on/off fluorescence probe.
Collapse
Affiliation(s)
- Miho Motoyama
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Thu-Hong Doan
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Paulina Hibner-Kulicka
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Ryo Otake
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Malgorzata Lukarska
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Jean-Francois Lohier
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Kota Ozawa
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Shinkoh Nanbu
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Yumiko Suzuki
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| |
Collapse
|
5
|
Wu Y, Liu N, Qi M, Qiao H, Lu X, Ma L, Zhou Y, Zhang FL. Monodentate Transient Directing Group Assisted Ruthenium(II)-Catalyzed Direct ortho-C-H Imidation of Benzaldehydes for Diverse Synthesis of Quinazoline and Fused Isoindolinone. Org Lett 2021; 23:3923-3927. [PMID: 33938757 DOI: 10.1021/acs.orglett.1c01083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
2-Fluoro-5-(trifluoromethyl)aniline was found to be a suitable monodentate transient directing group (MonoTDG) to enable Ru(II)-catalyzed intermolecular direct ortho-C(sp2)-H imidation of benzaldehydes. N-Tosyloxyphthalimide was used as an alternative azide-free amidation reagent to achieve high efficiency and good functional group tolerance. Moreover, the reaction could be enlarged to gram scale, and the amidated product could be readily converted into useful quinazoline and fused isoindolinone scaffolds by one-step derivatization.
Collapse
Affiliation(s)
- Yongdi Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Na Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Meifang Qi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Huihao Qiao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| | - Li Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| |
Collapse
|
6
|
Tighadouini S, Radi S, Benabbes R, Youssoufi MH, Shityakov S, El Massaoudi M, Garcia Y. Synthesis, Biochemical Characterization, and Theoretical Studies of Novel β-Keto-enol Pyridine and Furan Derivatives as Potent Antifungal Agents. ACS OMEGA 2020; 5:17743-17752. [PMID: 32715261 PMCID: PMC7377641 DOI: 10.1021/acsomega.0c02365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
In the present study, we report the design and synthesis of new derivatives of the β-keto-enol grafted on pyridine and furan moieties (L 1 -L 11 ). Structures of compounds were fully confirmed by Fourier transform infrared spectroscopy (FT-IR), 1H NMR, 13C NMR, electrospray ionization/liquid chromatography-mass spectrometry (ESI/LC-MS), and elemental analysis. The compounds were screened for antifungal and antibacterial activities (Escherichia coli, Bacillus subtilis, and Micrococcus luteus). In vitro evaluation showed significant fungicidal activity for L 1 , L 4 , and L 5 against fungal strains (Fusarium oxysporum f.sp albedinis) compared to the reference standard. Especially, the exceptional activity has been demonstrated for L 1 with IC50 = 12.83 μg/mL. This compound and the reference benomyl molecule also showed a correlation between experimental antifungal activity and theoretical predictions by Petra/Osiris/Molinspiration (POM) calculations and molecular coupling against the Fgb1 protein. The highest inhibition of bacterial growth for L 1 is due to its strongest binding to the target protein. This report may stimulate the further synthesis of examples of this substance class for the development of new drugs.
Collapse
Affiliation(s)
- Said Tighadouini
- Laboratory
of Organic Synthesis, Extraction and Valorization, Faculty of Sciences
Ain Chock, Hassan II University, Route d’El Jadida Km 2, BP 5366 Casablanca, Morocco
| | - Smaail Radi
- Laboratory
of Applied Chemistry & Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
- ,
| | - Redouane Benabbes
- Department
of Biology, Faculty of Sciences, Mohammed
First University, 60000 Oujda, Morocco
| | - Moulay Hfid Youssoufi
- Laboratory
of Applied Chemistry & Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
| | - Sergey Shityakov
- Department
of Bioinformatics, Würzburg University, Am Hubland, 97074 Würzburg, Germany
| | - Mohamed El Massaoudi
- Laboratory
of Applied Chemistry & Environment, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco
| | - Yann Garcia
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis (IMCN/MOST), Universite′
catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|