1
|
Acharyya RK, Rej RK, Hu B, Chen Z, Wu D, Lu J, Metwally H, McEachern D, Wang Y, Jiang W, Bai L, Tošović J, Gersch CL, Xu G, Zhang W, Wu W, Priestley ES, Sui Z, Sarkari F, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-1233 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader for the Treatment of ER+ Human Breast Cancer. J Med Chem 2024. [PMID: 39485242 DOI: 10.1021/acs.jmedchem.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the development of highly effective therapies for the treatment of estrogen receptor α (ERα)-positive human breast cancer, clinical resistance to current therapies requires the development of novel therapeutic strategies. Herein, we report the discovery of ERD-1233 as a potent and orally efficacious ERα degrader designed using the PROTAC technology. ERD-1233 was developed based on Lasofoxifene as the ER binding moiety and a novel cereblon ligand through extensive optimization of the linker. ERD-1233 potently and effectively reduces the ERα protein in vitro and achieves excellent oral bioavailability in mice and rats. Oral administration of ERD-1233 effectively reduces ER protein in ER+ tumors and achieves tumor regression in the ER wild-type MCF-7 xenograft tumor model and strong tumor growth inhibition in the ESR1Y537S mutated model in mice. Our data demonstrate that ERD-1233 is a promising ER PROTAC degrader for extensive evaluation as a new therapy for the treatment of ER+ human breast cancer.
Collapse
Affiliation(s)
- Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Jiang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guozhang Xu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Weihong Zhang
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - WenXue Wu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - E Scott Priestley
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Zhihua Sui
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Min J, Liu X, Peng R, Chen CC, Wang W, Guo RT. New generation estrogen receptor-targeted agents in breast cancer: present situation and future prospectives. ACTA MATERIA MEDICA 2024; 3:57-71. [PMID: 39373009 PMCID: PMC11450757 DOI: 10.15212/amm-2024-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Endocrine therapy which blocking the signaling of estrogen receptor, has long been effective for decades as a primary treatment choice for breast cancer patients expressing ER. However, the issue of drug resistance poses a significant clinical challenge. It's critically important to create new therapeutic agents that can suppress ERα activity, particularly in cases of ESR1 mutations. This review highlights recent efforts in drug development of next generation ER-targeted agents, including oral selective ER degraders (SERDs), proteolysis targeting chimera (PROTAC) ER degraders, other innovative molecules such as complete estrogen receptor antagonists (CERANs) and selective estrogen receptor covalent antagonists (SERCAs). The drug design, efficacy and clinical trials for each compound were detailed.
Collapse
Affiliation(s)
- Jian Min
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Liu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Rouming Peng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Rey-Ting Guo
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Shareef U, Altaf A, Ahmed M, Akhtar N, Almuhayawi MS, Al Jaouni SK, Selim S, Abdelgawad MA, Nagshabandi MK. A comprehensive review of discovery and development of drugs discovered from 2020-2022. Saudi Pharm J 2024; 32:101913. [PMID: 38204591 PMCID: PMC10777120 DOI: 10.1016/j.jsps.2023.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
To fully evaluate and define the new drug molecule for its pharmacological characteristics and toxicity profile, pre-clinical and clinical studies are conducted as part of the drug research and development process. The average time required for all drug development processes to finish various regulatory evaluations ranges from 11.4 to 13.5 years, and the expense of drug development is rising quickly. The development in the discovery of newer novel treatments is, however, largely due to the growing need for new medications. Methods to identify Hits and discovery of lead compounds along with pre-clinical studies have advanced, and one example is the introduction of computer-aided drug design (CADD), which has greatly shortened the time needed for the drug to go through the drug discovery phases. The pharmaceutical industry will hopefully be able to address the present and future issues and will continue to produce novel molecular entities (NMEs) to satisfy the expanding unmet medical requirements of the patients as the success rate of the drug development processes is increasing. Several heterocyclic moieties have been developed and tested against many targets and proved to be very effective. In-depth discussion of the drug design approaches of newly found drugs from 2020 to 2022, including their pharmacokinetic and pharmacodynamic profiles and in-vitro and in-vivo assessments, is the main goal of this review. Considering the many stages these drugs are going through in their clinical trials, this investigation is especially pertinent. It should be noted that synthetic strategies are not discussed in this review; instead, they will be in a future publication.
Collapse
Affiliation(s)
- Usman Shareef
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Aisha Altaf
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| |
Collapse
|
5
|
Dai R, Bao X, Zhang Y, Huang Y, Zhu H, Yang K, Wang B, Wen H, Li W, Liu J. Hot-Spot Residue-Based Virtual Screening of Novel Selective Estrogen-Receptor Degraders for Breast Cancer Treatment. J Chem Inf Model 2023; 63:7588-7602. [PMID: 37994801 DOI: 10.1021/acs.jcim.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The estrogen-receptor alfa (ERα) is considered pivotal for breast cancer treatment. Although selective estrogen-receptor degraders (SERDs) have been developed to induce ERα degradation and antagonism, their agonistic effect on the uterine tissue and poor pharmacokinetic properties limit further application of ERα; thus, discovering novel SERDs is necessary. The ligand preferentially interacts with several key residues of the protein (defined as hot-spot residues). Improving the interaction with hot-spot residues of ERα offers a promising avenue for obtaining novel SERDs. In this study, pharmacophore modeling, molecular mechanics/generalized Born surface area (MM/GBSA), and amino-acid mutation were combined to determine several hot-spot residues. Focusing on the interaction with these hot-spot residues, hit fragments A1-A3 and A9 were virtually screened from two fragment libraries. Finally, these hit fragments were linked to generate compounds B1-B3, and their biological activities were evaluated. Remarkably, compound B1 exhibited potent antitumor activity against MCF-7 cells (IC50 = 4.21 nM), favorable ERα binding affinity (Ki = 14.6 nM), and excellent ERα degradative ability (DC50 = 9.7 nM), which indicated its potential to evolve as a promising SERD for breast cancer treatment.
Collapse
Affiliation(s)
- Rupeng Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xueting Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Huang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haohao Zhu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Bo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Yao J, Tao Y, Hu Z, Li J, Xue Z, Zhang Y, Lei Y. Optimization of small molecule degraders and antagonists for targeting estrogen receptor based on breast cancer: current status and future. Front Pharmacol 2023; 14:1225951. [PMID: 37808197 PMCID: PMC10551544 DOI: 10.3389/fphar.2023.1225951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The estrogen receptor (ER) is a classical receptor protein that plays a crucial role in mediating multiple signaling pathways in various target organs. It has been shown that ER-targeting therapies inhibit breast cancer cell proliferation, enhance neuronal protection, and promote osteoclast formation. Several drugs have been designed to specifically target ER in ER-positive (ER+) breast cancer, including selective estrogen receptor modulators (SERM) such as Tamoxifen. However, the emergence of drug resistance in ER+ breast cancer and the potential side effects on the endometrium which has high ER expression has posed significant challenges in clinical practice. Recently, novel ER-targeted drugs, namely, selective estrogen receptor degrader (SERD) and selective estrogen receptor covalent antagonist (SERCA) have shown promise in addressing these concerns. This paper provides a comprehensive review of the structural functions of ER and highlights recent advancements in SERD and SERCA-related small molecule drugs, especially focusing on their structural optimization strategies and future optimization directions. Additionally, the therapeutic potential and challenges of novel SERDs and SERCAs in breast cancer and other ER-related diseases have been discussed.
Collapse
Affiliation(s)
- Jiaqi Yao
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zelin Hu
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Junjie Li
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Xue
- Department of Statistics, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Ya Zhang
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Chen Z, Hu B, Rej RK, Wu D, Acharyya RK, Wang M, Xu T, Lu J, Metwally H, Wang Y, McEachern D, Bai L, Gersch CL, Wang M, Zhang W, Li Q, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-3111 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader with Strong Antitumor Activity. J Med Chem 2023; 66:12559-12585. [PMID: 37647546 DOI: 10.1021/acs.jmedchem.3c01186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Estrogen receptor α (ERα) is a prime target for the treatment of ER-positive (ER+) breast cancer. Despite the development of several effective therapies targeting ERα signaling, clinical resistance remains a major challenge. In this study, we report the discovery of a new class of potent and orally bioavailable ERα degraders using the PROTAC technology, with ERD-3111 being the most promising compound. ERD-3111 exhibits potent in vitro degradation activity against ERα and demonstrates high oral bioavailability in mice, rats, and dogs. Oral administration of ERD-3111 effectively reduces the levels of wild-type and mutated ERα proteins in tumor tissues. ERD-3111 achieves tumor regression or complete tumor growth inhibition in the parental MCF-7 xenograft model with wild-type ER and two clinically relevant ESR1 mutated models in mice. ERD-3111 is a promising ERα degrader for further extensive evaluations for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mingliang Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem 2023; 256:115422. [PMID: 37163948 DOI: 10.1016/j.ejmech.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Discovery of SERDs has changed the direction of anticancer research, as more than 70% of breast cancer cases are estrogen receptor positive (ER+). Therapies such as selective estrogen receptor modulators (SERM) and aromatase inhibitors (AI's) have been effective, but due to endocrine resistance, SERDs are now considered essential therapeutics for the treatment of ER+ breast cancer. The present review deliberates the pathophysiology of SERDs from the literature covering various molecules in clinical trials. Estrogen receptors active sites distinguishing characteristics and interactions with currently available FDA-approved drugs have also been discussed. Designing strategy of previously reported SERDs, their SAR analysis, in silico, and the biological efficacy have also been summarized along with appropriate examples.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Shreejita Hazra
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
9
|
Lu Z, Cao Y, Zhang D, Meng X, Guo B, Kong D, Yang Y. Discovery of Thieno[2,3- e]indazole Derivatives as Novel Oral Selective Estrogen Receptor Degraders with Highly Improved Antitumor Effect and Favorable Druggability. J Med Chem 2022; 65:5724-5750. [PMID: 35357160 DOI: 10.1021/acs.jmedchem.2c00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine therapies in the treatment of early and metastatic estrogen receptor α positive (ERα+) breast cancer (BC) are greatly limited by de novo and acquired resistance. Selective estrogen receptor degraders (SERDs) like fulvestrant provide new strategies for endocrine therapy combinations due to unique mechanisms. Herein, we disclose our structure-based optimization of LSZ102 by replacing 6-hydroxybenzothiophene with 6H-thieno[2,3-e]indazole. Subsequent acrylic acid degron modifications led us to identify compound 40 as the preferred candidate. In general, compound 40 showed much better pharmacological profiles than the lead LSZ102, exhibiting growth inhibition of wild-type or tamoxifen-resistant MCF-7 cells, potent ERα degradation, together with superior pharmacokinetic properties, directional target tissue distribution including the brain, and robust antitumor efficacy in the mice breast cancer xenograft model. Currently, 40 is being evaluated in preclinical trials.
Collapse
Affiliation(s)
- Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yangzhi Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Deyu Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Discovery of GNE-502 as an orally bioavailable and potent degrader for estrogen receptor positive breast cancer. Bioorg Med Chem Lett 2021; 50:128335. [PMID: 34425201 DOI: 10.1016/j.bmcl.2021.128335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.
Collapse
|
11
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Shao P. A New Era in ER+ Breast Cancer: Best-in-Class Oral Selective Estrogen Receptor Degrader (SERD) Designed as an Endocrine Backbone Treatment. J Med Chem 2021; 64:11837-11840. [PMID: 34339201 DOI: 10.1021/acs.jmedchem.1c01268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
There has been intense interest in developing orally bioavailable SERDs, energized by the recent discovery of treatment-resistant ESR1 mutations. Overcoming the two decades long challenge of combining all the desirable activities and properties into one molecule, GDC-9545 (giredestrant) was identified with an exceptional preclinical profile. This Viewpoint seeks to place this molecule in the historical context of previously reported oral SERDs and highlights the exciting clinical potential for a best-in-class oral SERD.
Collapse
Affiliation(s)
- Pengcheng Shao
- Mitotherapeutix LLC, Farmington, Connecticut 06032, United States
| |
Collapse
|
13
|
Liang J, Zbieg JR, Blake RA, Chang JH, Daly S, DiPasquale AG, Friedman LS, Gelzleichter T, Gill M, Giltnane JM, Goodacre S, Guan J, Hartman SJ, Ingalla ER, Kategaya L, Kiefer JR, Kleinheinz T, Labadie SS, Lai T, Li J, Liao J, Liu Z, Mody V, McLean N, Metcalfe C, Nannini MA, Oeh J, O'Rourke MG, Ortwine DF, Ran Y, Ray NC, Roussel F, Sambrone A, Sampath D, Schutt LK, Vinogradova M, Wai J, Wang T, Wertz IE, White JR, Yeap SK, Young A, Zhang B, Zheng X, Zhou W, Zhong Y, Wang X. GDC-9545 (Giredestrant): A Potent and Orally Bioavailable Selective Estrogen Receptor Antagonist and Degrader with an Exceptional Preclinical Profile for ER+ Breast Cancer. J Med Chem 2021; 64:11841-11856. [PMID: 34251202 DOI: 10.1021/acs.jmedchem.1c00847] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.
Collapse
Affiliation(s)
- Jun Liang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert A Blake
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephen Daly
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Antonio G DiPasquale
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lori S Friedman
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas Gelzleichter
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Gill
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jennifer M Giltnane
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Simon Goodacre
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jane Guan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J Hartman
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ellen Rei Ingalla
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lorn Kategaya
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James R Kiefer
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tracy Kleinheinz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sharada S Labadie
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tommy Lai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Jun Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jiangpeng Liao
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Vidhi Mody
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Neville McLean
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Ciara Metcalfe
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michelle A Nannini
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Oeh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Martin G O'Rourke
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Daniel F Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yingqing Ran
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas C Ray
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Fabien Roussel
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Amy Sambrone
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leah K Schutt
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Maia Vinogradova
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Tao Wang
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Ingrid E Wertz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jonathan R White
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Siew Kuen Yeap
- Charles River Discovery Research Services UK Limited, 7-9 Spire Green Center, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Amy Young
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Birong Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaoping Zheng
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Wei Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yu Zhong
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
14
|
Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology 2021; 162:bqaa224. [PMID: 33284960 PMCID: PMC7787425 DOI: 10.1210/endocr/bqaa224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/13/2022]
Abstract
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Collapse
Affiliation(s)
- Anca M Farcas
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sankari Nagarajan
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Lu Y, Liu W. Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer. J Med Chem 2020; 63:15094-15114. [PMID: 33138369 DOI: 10.1021/acs.jmedchem.0c00913] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.
Collapse
Affiliation(s)
- Yunlong Lu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
16
|
Scott JS, Moss TA, Balazs A, Barlaam B, Breed J, Carbajo RJ, Chiarparin E, Davey PRJ, Delpuech O, Fawell S, Fisher DI, Gagrica S, Gangl ET, Grebe T, Greenwood RD, Hande S, Hatoum-Mokdad H, Herlihy K, Hughes S, Hunt TA, Huynh H, Janbon SLM, Johnson T, Kavanagh S, Klinowska T, Lawson M, Lister AS, Marden S, McGinnity DF, Morrow CJ, Nissink JWM, O'Donovan DH, Peng B, Polanski R, Stead DS, Stokes S, Thakur K, Throner SR, Tucker MJ, Varnes J, Wang H, Wilson DM, Wu D, Wu Y, Yang B, Yang W. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J Med Chem 2020; 63:14530-14559. [PMID: 32910656 DOI: 10.1021/acs.jmedchem.0c01163] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report the optimization of a series of tricyclic indazoles as selective estrogen receptor degraders (SERD) and antagonists for the treatment of ER+ breast cancer. Structure based design together with systematic investigation of each region of the molecular architecture led to the identification of N-[1-(3-fluoropropyl)azetidin-3-yl]-6-[(6S,8R)-8-methyl-7-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydro-3H-pyrazolo[4,3-f]isoquinolin-6-yl]pyridin-3-amine (28). This compound was demonstrated to be a highly potent SERD that showed a pharmacological profile comparable to fulvestrant in its ability to degrade ERα in both MCF-7 and CAMA-1 cell lines. A stringent control of lipophilicity ensured that 28 had favorable physicochemical and preclinical pharmacokinetic properties for oral administration. This, combined with demonstration of potent in vivo activity in mouse xenograft models, resulted in progression of this compound, also known as AZD9833, into clinical trials.
Collapse
Affiliation(s)
- James S Scott
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Moss
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Amber Balazs
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Jason Breed
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | | | - Paul R J Davey
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Oona Delpuech
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David I Fisher
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | - Eric T Gangl
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tyler Grebe
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Sudhir Hande
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Holia Hatoum-Mokdad
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kara Herlihy
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Samantha Hughes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Hunt
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Hoan Huynh
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sophie L M Janbon
- Early Chemical Development, Pharmaceutical Sciences, R&D, Macclesfield, United Kingdom
| | - Tony Johnson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stefan Kavanagh
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mandy Lawson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew S Lister
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stacey Marden
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | | | | | | | | | - Bo Peng
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Radoslaw Polanski
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Darren S Stead
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Stokes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Kumar Thakur
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Scott R Throner
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Jeffrey Varnes
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Haixia Wang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David M Wilson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | - Ye Wu
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bin Yang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| |
Collapse
|