1
|
Nandi A, Nigar T, Das A, Dey YN. Network pharmacology analysis of Plumbago zeylanica to identify the therapeutic targets and molecular mechanisms involved in ameliorating hemorrhoids. J Biomol Struct Dyn 2025; 43:161-175. [PMID: 37948311 DOI: 10.1080/07391102.2023.2280681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Plumbago zeylanica is an important plant used in the Ayurvedic system of medicine for the treatment of hemorrhoids or piles. Despite its clinical uses, its molecular mechanism, for ameliorating hemorrhoids is not yet explored. Hence, the present study evaluated the plausible molecular mechanisms of P. zeylanica in the treatment of hemorrhoids using network pharmacology and other in silico analysis. Network pharmacology was carried out by protein, GO, and KEGG enrichment analysis. Further ADME/T, molecular docking and dynamics studies of the resultant bioactive compounds of P. zeylanica with the regulated proteins were evaluated. Results of the network pharmacology analysis revealed that the key pathways and plausible molecular mechanisms involved in the treatment effects of P. zeylanica on hemorrhoids are cell migration, proliferation, motility, and apoptosis which are synchronized by cancer, focal adhesion, and by signalling relaxin, Rap1, and calcium pathways which indicates the involvement of angiogenesis and vasodilation which are the characteristic features of hemorrhoids. Further, the molecular docking and dynamics studies revealed that the bio active ingredients of P. zeylanica strongly bind with the key target proteins in the ambiance of hemorrhoids. Hence, the study revealed the mechanism of P. zeylanica in ameliorating hemorrhoids.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arijit Nandi
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, West Bengal, India
| | - Tanzeem Nigar
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, West Bengal, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Yadu Nandan Dey
- Department of Pharmacology, Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, West Bengal, India
| |
Collapse
|
2
|
Zhu J, Meng H, Li X, Jia L, Xu L, Cai Y, Chen Y, Jin J, Yu L. Optimization of virtual screening against phosphoinositide 3-kinase delta: Integration of common feature pharmacophore and multicomplex-based molecular docking. Comput Biol Chem 2024; 109:108011. [PMID: 38198965 DOI: 10.1016/j.compbiolchem.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Extensive research has accumulated which suggests that phosphatidylinositol 3-kinase delta (PI3Kδ) is closely related to the occurrence and development of various human diseases, making PI3Kδ a highly promising drug target. However, PI3Kδ exhibits high homology with other members of the PI3K family, which poses significant challenges to the development of PI3Kδ inhibitors. Therefore, in the present study, a hybrid virtual screening (VS) approach based on a ligand-based pharmacophore model and multicomplex-based molecular docking was developed to find novel PI3Kδ inhibitors. 13 crystal structures of the human PI3Kδ-inhibitor complex were collected to establish models. The inhibitors were extracted from the crystal structures to generate the common feature pharmacophore. The crystallographic protein structures were used to construct a naïve Bayesian classification model that integrates molecular docking based on multiple PI3Kδ conformations. Subsequently, three VS protocols involving sequential or parallel molecular docking and pharmacophore approaches were employed. External predictions demonstrated that the protocol combining molecular docking and pharmacophore resulted in a significant improvement in the enrichment of active PI3Kδ inhibitors. Finally, the optimal VS method was utilized for virtual screening against a large chemical database, and some potential hit compounds were identified. We hope that the developed VS strategy will provide valuable guidance for the discovery of novel PI3Kδ inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Huiqin Meng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
3
|
Schmidt R, Ward CC, Dajani R, Armour-Garb Z, Ota M, Allain V, Hernandez R, Layeghi M, Xing G, Goudy L, Dorovskyi D, Wang C, Chen YY, Ye CJ, Shy BR, Gilbert LA, Eyquem J, Pritchard JK, Dodgson SE, Marson A. Base-editing mutagenesis maps alleles to tune human T cell functions. Nature 2024; 625:805-812. [PMID: 38093011 PMCID: PMC11065414 DOI: 10.1038/s41586-023-06835-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.
Collapse
Affiliation(s)
- Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| | - Carl C Ward
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| | - Rama Dajani
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Zev Armour-Garb
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Mineto Ota
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Rosmely Hernandez
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Madeline Layeghi
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Galen Xing
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Laine Goudy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Dmytro Dorovskyi
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte Wang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Luke A Gilbert
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, USA
- Arc Institute, Palo Alto, CA, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Stacie E Dodgson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Ahmad S, Sayeed S, Bano N, Sheikh K, Raza K. In-silico analysis reveals Quinic acid as a multitargeted inhibitor against Cervical Cancer. J Biomol Struct Dyn 2023; 41:9770-9786. [PMID: 36379678 DOI: 10.1080/07391102.2022.2146202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
The cervix is the lowermost part of the uterus that connects to the vagina, and cervical cancer is a malignant cervix tumour. One of this cancer's most important risk factors is HPV infection. In the approach to finding an effective treatment for this disease, various works have been done around genomics and drug discovery. Finding the major altered genes was one of the most significant studies completed in the field of cervical cancer by TCGA (The Cancer Genome Atlas), and these genes are TGFBR2, MED1, ERBB3, CASP8, and HLA-A. The greatest genomic alterations were found in the PI3K/MAPK and TGF-Beta signalling pathways, suggesting that numerous therapeutic targets may come from these pathways in the future. We, therefore, conducted a combined enrichment analysis of genes gathered from various works of literature for this study. The final six key genes from the list were obtained after enrichment analysis using GO, KEGG, and Reactome methods. The six proteins against the identified genes were then subjected to a docking-based screening against a library of 6,87,843 prepared natural compounds from the ZINC15 database. The most stable compound was subsequently discovered through virtual screening to be the natural substance Quinic acid, which also had the highest binding affinity for all six proteins and a better docking score. To examine their stability, the study was extended to MM/GBSA and MD simulations on the six docked proteins, and comparative docking-based calculations led us to identify the Quinic Acid as a multitargeted compound. The overall deviation of the compound was less than 2 Å for all the complexes considered best for the biological molecules, and the simulation interaction analysis reveals a huge web of interaction during the simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Salwa Sayeed
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Nagmi Bano
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Kayenat Sheikh
- Computational Structural Biology Lab, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Ma T, Zheng Y, Huang S. SO 2ClF: A Reagent for Controllable Chlorination and Chlorooxidation of Simple Unprotected Indoles. J Org Chem 2023; 88:4839-4847. [PMID: 36931283 DOI: 10.1021/acs.joc.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Sulfuryl chlorofluoride was first employed as a versatile reagent for controllable chlorination and chlorooxidation of simple unprotected indoles. Three types of products including 3-chloro-indoles, 3-chloro-2-oxindoles, and 3,3-dichloro-2-oxindoles could be selectively obtained in good to excellent yields by switching the reaction solvents. The present method features easy-to-operate, broad substrate scope, and mild reaction conditions.
Collapse
Affiliation(s)
- Tianting Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Network Toxicology Guided Mechanism Study on the Association between Thyroid Function and Exposures to Polychlorinated Biphenyls Mixture. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2394398. [PMID: 36203481 PMCID: PMC9532094 DOI: 10.1155/2022/2394398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent and highly toxic pollutants, which can accumulate in organisms and produce toxic effects, especially damaging the function of thyroid hormones. So far, the molecular mechanism of PCBs mixture and their metabolites interfering with thyroid hormones has not been studied thoroughly except for individual compounds. In this study, PubMed, Web of Science, and STITCH databases were used to search PCBs and their corresponding target proteins. The intersection of PCBs and thyroid hormone dysfunction target proteins was obtained from GeneCards. The “compounds-targets-pathways” network was constructed by Cytoscape software. And KEGG and Go analyses were performed for key targets. Finally, molecular docking was used to verify the binding effect. Four major active components, five key targets, and 10 kernel pathways were successfully screened by constructing the network. Functional enrichment analysis showed that the interference was mediated by cancer, proteoglycans, PI3K-Akt, thyroid hormone, and FoxO signaling pathways. The molecular docking results showed that the binding energies were less than -5 kcal·mol-1. PCBs and their metabolites may act on the key targets of MAPK3, MAPK1, RXRA, PIK3R1, and TP53. The toxic effect of sulfated and methyl sulfone PCBs is greater. The method of screening targets based on the simultaneous action of multiple PCBs can provide a reference for other research. The targets were not found in previous metabolite toxicity studies. It also provides a bridge for the toxic effects and experimental research of PCBs and their metabolites in the future.
Collapse
|
8
|
Yao H, Zhong X, Wang B, Lin S, Yan Z. Cyanomethylation of the Benzene Rings and Pyridine Rings via Direct Oxidative Cross-Dehydrogenative Coupling with Acetonitrile. Org Lett 2022; 24:2030-2034. [PMID: 35261234 DOI: 10.1021/acs.orglett.2c00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel and efficient approach for the amine-directed dehydrogenative C(sp2)-C(sp3) coupling of arylamines with acetonitrile was reported by using FeCl2 as the catalyst. Substituted anilines, aminopyridines, naphthylamines, and some nitrogen-containing heterocyclic arylamines react with inactive acetonitrile to form the corresponding arylacetonitriles in moderate to good yields. This protocol features nontoxic iron catalysis, efficient atom economy, nonprefunctionalized starting materials, good regioselectivity, and excellent compatibility of functional groups and aromatic rings, providing a novel, straightforward, and green approach toward arylacetonitriles.
Collapse
Affiliation(s)
- Hua Yao
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Xiaoyang Zhong
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Bingqing Wang
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Sen Lin
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Zhaohua Yan
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
9
|
Down K, Amour A, Anderson NA, Barton N, Campos S, Cannons EP, Clissold C, Convery MA, Coward JJ, Doyle K, Duempelfeld B, Edwards CD, Goldsmith MD, Krause J, Mallett DN, McGonagle GA, Patel VK, Rowedder J, Rowland P, Sharpe A, Sriskantharajah S, Thomas DA, Thomson DW, Uddin S, Hamblin JN, Hessel EM. Discovery of GSK251: A Highly Potent, Highly Selective, Orally Bioavailable Inhibitor of PI3Kδ with a Novel Binding Mode. J Med Chem 2021; 64:13780-13792. [PMID: 34510892 DOI: 10.1021/acs.jmedchem.1c01102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optimization of a previously reported lead series of PI3Kδ inhibitors with a novel binding mode led to the identification of a clinical candidate compound 31 (GSK251). Removal of an embedded Ames-positive heteroaromatic amine by reversing a sulfonamide followed by locating an interaction with Trp760 led to a highly selective compound 9. Further optimization to avoid glutathione trapping, to enhance potency and selectivity, and to optimize an oral pharmacokinetic profile led to the discovery of compound 31 (GSK215) that had a low predicted daily dose (45 mg, b.i.d) and a rat toxicity profile suitable for further development.
Collapse
Affiliation(s)
- Kenneth Down
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Augustin Amour
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Niall A Anderson
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Nick Barton
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Sebastien Campos
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Edward P Cannons
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Cole Clissold
- Charles River Discovery, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Maire A Convery
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - John J Coward
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Kevin Doyle
- Charles River Discovery, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Birgit Duempelfeld
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Christopher D Edwards
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Michael D Goldsmith
- Charles River Discovery, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Jana Krause
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - David N Mallett
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Grant A McGonagle
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Vipulkumar K Patel
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - James Rowedder
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Paul Rowland
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Andrew Sharpe
- Charles River Discovery, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | | | - Daniel A Thomas
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Douglas W Thomson
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Sorif Uddin
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - J Nicole Hamblin
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Edith M Hessel
- Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| |
Collapse
|
10
|
Fradera X, Deng Q, Achab A, Garcia Y, Kattar SD, McGowan MA, Methot JL, Wilson K, Zhou H, Shaffer L, Goldenblatt P, Tong V, Augustin MA, Altman MD, Lesburg CA, Shah S, Katz JD. Discovery of a new series of PI3K-δ inhibitors from Virtual Screening. Bioorg Med Chem Lett 2021; 42:128046. [PMID: 33865969 DOI: 10.1016/j.bmcl.2021.128046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
PI3K-δ mediates key immune cell signaling pathways and is a target of interest for treatment of oncological and immunological disorders. Here we describe the discovery and optimization of a novel series of PI3K-δ selective inhibitors. We first identified hits containing an isoindolinone scaffold using a combined ligand- and receptor-based virtual screening workflow, and then improved potency and selectivity guided by structural data and modeling. Careful optimization of molecular properties led to compounds with improved permeability and pharmacokinetic profile, and high potency in a whole blood assay.
Collapse
Affiliation(s)
- Xavier Fradera
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA.
| | - Qiaolin Deng
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Yudith Garcia
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | | | | - Joey L Methot
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Kevin Wilson
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Hua Zhou
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Lynsey Shaffer
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | | | | | | | - Michael D Altman
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Charles A Lesburg
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Sanjiv Shah
- Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jason D Katz
- Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|