1
|
Chen Z, Yang H, Zhang Y, Lyu X, Shi Q, Zhang C, Wang X, Wang Z, Zhang Y, Deng Y, Wang Y, Huang Y, Xu Y, Huang X, Li Y. Discovery of CZL-046 with an ( S)-3-Fluoropyrrolidin-2-one Scaffold as a p300 Bromodomain Inhibitor for the Treatment of Multiple Myeloma. J Med Chem 2024; 67:18606-18628. [PMID: 39356741 DOI: 10.1021/acs.jmedchem.4c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
E1A binding protein (p300) is a promising therapeutic target for the treatment of cancer. Herein, we report the discovery of a series of novel inhibitors with an (S)-3-fluoropyrrolidin-2-one scaffold targeting p300 bromodomain. The best compound 29 (CZL-046) shows potent inhibitory activity of p300 bromodomain (IC50 = 3.3 nM) and antiproliferative activity in the multiple myeloma (MM) cell line (OPM-2 IC50 = 51.5 nM). 29 suppressed the mRNA levels of c-Myc and IRF4 and downregulated the expression of c-Myc and H3K27Ac. Compared to the lead compound 5, 29 exhibits significantly improved in vitro and in vivo metabolic properties. Oral administration of 29 with 30 mg/kg achieved a TGI value of 44% in the OPM-2 xenograft model, accompanied by good tolerability. The cocrystal structure of CREB binding protein bromodomain with 29 provides an insight into the precise binding mode. The results demonstrate that 29 is a promising p300 bromodomain inhibitor for the treatment of MM.
Collapse
Affiliation(s)
- Zonglong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Yan Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Lyu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiongyu Shi
- Lingang Laboratory, Shanghai 200031, P. R. China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingcan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zekun Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ying Zhang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Deng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yuting Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Xu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
2
|
Huang T, Yin H, Li T, Yu C, Zhang K, Yao C. NHC catalyzed radical tandem cyclization: an efficient synthesis of α,α-difluoro-γ-lactam derivatives. Org Biomol Chem 2024; 22:6988-6998. [PMID: 39140215 DOI: 10.1039/d4ob01012d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, an N-heterocyclic carbene (NHC) catalyzed radical tandem cyclization reaction of N-allylbromodifluoroacetamides and aldehydes has been developed. This method is an efficient protocol for synthesizing α,α-difluoro-γ-lactam derivatives in moderate to good yields (27 examples, up to 88% yield and 10 : 1 dr). This strategy features mild and metal-free conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Tianjiao Huang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Huiping Yin
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Tuanjie Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Chenxia Yu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Kai Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Changsheng Yao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
3
|
Zhang P, Li W, Yang S, Qu W, Wang L, Lin J, Gao X. Construction of Phosphorothiolated 2-Pyrrolidinones via Photoredox/Copper-Catalyzed Cascade Radical Cyclization/Phosphorothiolation. J Org Chem 2024; 89:4947-4957. [PMID: 38498700 DOI: 10.1021/acs.joc.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A photoredox/copper-catalyzed cascade radical cyclization/phosphorothiolation reaction of N-allylbromoacetamides and P(O)SH compounds has been established. A broad range of novel nonfluorine- or difluoro-substituted 2-pyrrolidinones bearing the C(sp3)-SP(O)(OR)2 moiety can be conveniently constructed in moderate to good yields under mild conditions. Importantly, most of the tested phosphorothiolated 2-pyrrolidinones showed potent inhibitory effects toward both AChE and BChE.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuai Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
4
|
Ghorayshian A, Danesh M, Mostashari-Rad T, fassihi A. Discovery of novel RARα agonists using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulation studies. PLoS One 2023; 18:e0289046. [PMID: 37616260 PMCID: PMC10449137 DOI: 10.1371/journal.pone.0289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nuclear retinoic acid receptors (RARs) are ligand-dependent transcription factors involved in various biological processes, such as embryogenesis, cell proliferation, differentiation, reproduction, and apoptosis. These receptors are regulated by retinoids, i.e., retinoic acid (RA) and its analogs, as receptor agonists. RAR agonists are promising therapeutic agents for the treatment of serious dermatological disorders, including some malignant conditions. By inducing apoptosis, they are able to inhibit the proliferation of diverse cancer cell lines. Also, RAR agonists have recently been identified as therapeutic options for some neurodegenerative diseases. These features make retinoids very attractive molecules for medical purposes. Synthetic selective RAR agonists have several advantages over endogenous ones, but they suffer poor pharmacokinetic properties. These compounds are normally lipophilic acids with unfavorable drug-like features such as poor oral bioavailability. Recently, highly selective, potent, and less toxic RAR agonists with proper lipophilicity, thus, good oral bioavailability have been developed for some therapeutic applications. In the present study, ligand and structure-based virtual screening technique was exploited to introduce some novel RARα agonists. Pharmacokinetic assessment was also performed in silico to suggest those compounds which have optimized drug-like features. Finally, two compounds with the best in silico pharmacological features are proposed as lead molecules for future development of RARα agonists.
Collapse
Affiliation(s)
- Atefeh Ghorayshian
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahshid Danesh
- Functional Genomics & System Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany
| | - Tahereh Mostashari-Rad
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Afshin fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Fouda A, Negi S, Zaremba O, Gaidar RS, Moroz YS, Rusanov E, Paraskevas S, Tchervenkov J. Discovery, Synthesis, and In Vitro Characterization of 2,3 Derivatives of 4,5,6,7-Tetrahydro-Benzothiophene as Potent Modulators of Retinoic Acid Receptor-Related Orphan Receptor γt. J Med Chem 2023; 66:7355-7373. [PMID: 37172324 PMCID: PMC10259452 DOI: 10.1021/acs.jmedchem.3c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor that is expressed in a variety of tissues and is a potential drug target for the treatment of inflammatory and auto-immune diseases, metabolic diseases, and resistant cancer types. We herein report the discovery of 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene modulators of RORγt. We also report the solubility in acidic/neutral pH, mouse/human/dog/rat microsomal stability, Caco-2, and MDR1-MDCKII permeabilities of a set of these derivatives. For this group of modulators, inverse agonism by steric clashes and push-pull mechanisms induce greater instability to protein conformation compared to agonist lock hydration. Independent of the two mechanisms, we observed a basal modulatory activity of the tested 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene toward RORγt due to the interactions with the Cys320-Glu326 and Arg364-Phe377 hydrophilic regions. The drug discovery approach reported in the current study can be employed to discover modulators of nuclear receptors and other globular protein targets.
Collapse
Affiliation(s)
- Ahmed Fouda
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | - Sarita Negi
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | | | | | - Yurii S. Moroz
- Chemspace
LLC, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - Eduard Rusanov
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Kyïv 02094, Ukraine
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
| | - Steven Paraskevas
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Jean Tchervenkov
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
6
|
Zhang J, Chen B, Zhang C, Sun N, Huang X, Wang W, Fu W. Modes of action insights from the crystallographic structures of retinoic acid receptor-related orphan receptor-γt (RORγt). Eur J Med Chem 2023; 247:115039. [PMID: 36566711 DOI: 10.1016/j.ejmech.2022.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
RORγt plays an important role in mediating IL-17 production and some tumor cells. It has four functional domains, of which the ligand-binding domain (LBD) is responsible for binding agonists to recruit co-activators or inverse agonists to prevent co-activator recruiting the agonists. Thus, potent ligands targeting the LBD of this protein could provide novel treatments for cancer and autoimmune diseases. In this perspective, we summarized and discussed various modes of action (MOA) of RORγt-ligand binding structures. The ligands can bind with RORγt at either orthosteric site or the allosteric site, and the binding modes at these two sites are different for agonists and inverse agonist. At the orthosteric site, the binding of agonist is to stabilize the H479-Y502-F506 triplet interaction network of RORγt. The binding of inverse agonist features as these four apparent ways: (1) blocking the entrance of the agonist pocket in RORγt; (2) directly breaking the H479-Y502 pair interactions; (3) destabilizing the triplet H479-Y502-F506 interaction network through perturbing the conformation of the side chain in M358 at the bottom of the binding pocket; (4) and destabilizing the triplet H479-Y502-F506 through changing the conformation of the side chain of residue W317 side chain. At the allosteric site of RORγt, the binding of inverse agonist was found recently to inhibit the activation of protein by interacting directly with H12, which results in unfolding of helix 11' and orientation of H12 to directly block cofactor peptide binding. This overview of recent advances in the RORγt structures is expected to provide a guidance of designing more potent drugs to treat RORγt-related diseases.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Baiyu Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Chao Zhang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Nannan Sun
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Xiaoqin Huang
- Center for Research Computing, Office of Information Technology, Center for Theoretical Biological Physics, Rice University, Houston, TX, 77030, USA
| | - Wuqing Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China
| | - Wei Fu
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, 201301, PR China.
| |
Collapse
|
7
|
Ye H, Zhou L, Chen Y, Tong H. Visible light driven multicomponent synthesis of difluoroamidosulfonyl quinoline derivatives. Org Biomol Chem 2023; 21:846-850. [PMID: 36602158 DOI: 10.1039/d2ob02069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A visible-light-induced photocatalyst-free three-component radical tandem cyclization of N-propargylamine and N-allylbromodifluoroacetamides with the insertion of sulfur dioxide has been developed. Diverse difluoroamidosulfonylated quinolines are obtained in moderate to good yields. This protocol features broad functional group tolerance and high regioselectivity. Moreover, mechanistic studies reveal the involvement of the radical pathway and the formation of an electron donor-acceptor (EDA) complex in this reaction.
Collapse
Affiliation(s)
- Haiwei Ye
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Liping Zhou
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Yunhua Chen
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Huaguang Tong
- Taizhou Daozhi Tech Co., Ltd, Taizhou, 318000, P.R. China
| |
Collapse
|
8
|
Meanwell NA, Loiseleur O. Applications of Isosteres of Piperazine in the Design of Biologically Active Compounds: Part 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10972-11004. [PMID: 35675052 DOI: 10.1021/acs.jafc.2c00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applications of piperazine and homopiperazine in drug design are well-established, and these heterocycles have found use as both scaffolding and terminal elements and also as a means of introducing a water-solubilizing element into a molecule. In the accompanying review (10.1021/acs.jafc.2c00726), we summarized applications of piperazine and homopiperazine and their fused ring homologues in bioactive compound design along with illustrations of the use of 4-substituted piperidines and a sulfoximine-based mimetic. In this review, we discuss applications of pyrrolidine- and fused-pyrrolidine-based mimetics of piperazine and homopiperazine and illustrate derivatives of azetidine that include stretched and spirocyclic motifs, along with applications of a series of diaminocycloalkanes.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Post Office Box 4000, Princeton, New Jersey 08543, United States
| | - Olivier Loiseleur
- Syngenta Crop Protection Research, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| |
Collapse
|
9
|
Pham B, Cheng Z, Lopez D, Lindsay RJ, Foutch D, Majors RT, Shen T. Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ. Front Mol Biosci 2022; 9:904445. [PMID: 35782874 PMCID: PMC9240913 DOI: 10.3389/fmolb.2022.904445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling molecules and regulates at the gene transcription level. Since RORγ has a high basal activity and plays an important role in immune responses, inhibitors targeting this receptor have been a focus for many studies. The receptor-ligand interaction is complex, and often subtle differences in ligand structure can determine its role as an inverse agonist or an agonist. We examined more than 130 existing RORγ crystal structures that have the same receptor complexed with different ligands. We reported the features of receptor-ligand interaction patterns and the differences between agonist and inverse agonist binding. Specific changes in the contact interaction map are identified to distinguish active and inactive conformations. Further statistical analysis of the contact interaction patterns using principal component analysis reveals a dominant mode which separates allosteric binding vs. canonical binding and a second mode which may indicate active vs. inactive structures. We also studied the nature of constitutive activity by performing a 100-ns computer simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison, we identified a group of conserved contacts that have similar contact strength between the two receptors. These conserved contact interactions, especially a couple key contacts in H11–H12 interaction, can be considered essential to the constitutive activity of RORγ. These protein-ligand and internal protein contact interactions can be useful in the development of new drugs that direct receptor activity.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Ziju Cheng
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Daniel Lopez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Richard J. Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - David Foutch
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - Rily T. Majors
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Tongye Shen,
| |
Collapse
|
10
|
Zheng X, Shen Q, Yin C, Li L, Zhong T, Yu C. Photoinduced Three‐Component Difluoroamidosulfonylation/Bicyclization: Regioselectivity Synthesis of Seven‐Membered Dibenzosultams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qitao Shen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lianghao Li
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
11
|
Li Z, Liu T, He X, Bai C. The evolution paths of some reprehensive scaffolds of RORγt modulators, a perspective from medicinal chemistry. Eur J Med Chem 2021; 228:113962. [PMID: 34776280 DOI: 10.1016/j.ejmech.2021.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The ligand binding domain (LBD) of retinoid-related orphan nuclear receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to cure autoimmune diseases via modulating the IL-17 and IL-22 production by Th17 cells. Diverse chemical scaffolds of these small molecules have been discovered by multiple groups with methods such as high throughput screening (HTS) and virtual screening. These different scaffolds are further developed by medicinal chemists to afford lead compounds the best of which enter clinical trials. In this review, we summarize these chemical scaffolds and their evolution paths according to the groups in which they have been discovered or studied. We combine the data of the chemistry, biological assays and structural biology of each chemical scaffold, in order to afford insight to develop new RORγt modulators with higher potency, less toxicity and elucidated working mechanism.
Collapse
Affiliation(s)
- Zhuohao Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
12
|
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021; 16:1517-1535. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The transcription factor retinoic acid-related orphan receptor gamma t (RORγt) has been identified as the master regulator of TH17 cell differentiation and IL-17/22 production and is therefore an attractive target for the treatment of inflammatory diseases. Several orally or topically administered small molecule RORγt inverse agonists (RIAs) have progressed up to the end of clinical Phase 2.Areas covered: Based on publications and patent evaluations this review summarizes the evolution of the chemical matter for all 16 pharmaceutical companies, who develop(ed) a clinical-stage RIAs (until March 2021). Structure proposals for some clinical stage RIAs are presented and the outcome of the clinical trials is discussed.Expert opinion: So far, the clinical trials have been plagued with a high attrition rate. Main reasons were lack of efficacy (topical) or safety signals (oral) as well as, amongst other things, thymic lymphomas as seen with BMS-986251 in a preclinical study and liver enzyme elevations in humans with VTP-43742. Possibilities to mitigate these risks could be the use of RIAs with different chemical structures not interfering with thymocytes maturation and no livertox-inducing properties. With new frontrunners (e.g., ABBV-157 (cedirogant), BI 730357 or IMU-935) this is still an exciting time for this treatment approach.
Collapse
|
13
|
Liu Q, Xiao HY, Batt DG, Xiao Z, Zhu Y, Yang MG, Li N, Yip S, Li P, Sun D, Wu DR, Ruzanov M, Sack JS, Weigelt CA, Wang J, Li S, Shuster DJ, Xie JH, Song Y, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Chacko S, Khandelwal P, Dudhgaonkar S, Rudra A, Nagar J, Murali V, Govindarajan A, Denton R, Zhao Q, Meanwell NA, Borzilleri R, Dhar TGM. Azatricyclic Inverse Agonists of RORγt That Demonstrate Efficacy in Models of Rheumatoid Arthritis and Psoriasis. ACS Med Chem Lett 2021; 12:827-835. [PMID: 34055233 DOI: 10.1021/acsmedchemlett.1c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Structure-activity relationship studies directed toward the replacement of the fused phenyl ring of the lead hexahydrobenzoindole RORγt inverse agonist series represented by 1 with heterocyclic moieties led to the identification of three novel aza analogs 5-7. The hexahydropyrrolo[3,2-f]quinoline series 5 (X = N, Y = Z=CH) showed potency and metabolic stability comparable to series 1 but with improved in vitro membrane permeability and serum free fraction. This structural modification was applied to the hexahydrocyclopentanaphthalene series 3, culminating in the discovery of 8e as a potent and selective RORγt inverse agonist with an excellent in vitro profile, good pharmacokinetic properties, and biologic-like in vivo efficacy in preclinical models of rheumatoid arthritis and psoriasis.
Collapse
Affiliation(s)
- Qingjie Liu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Hai-Yun Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Zili Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Yeheng Zhu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Michael G. Yang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Ning Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Peng Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dawn Sun
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John S. Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - David J. Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jenny H. Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Yunling Song
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Mary T. Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Silvi Chacko
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shailesh Dudhgaonkar
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Anjuman Rudra
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Jignesh Nagar
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Venkata Murali
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arun Govindarajan
- Biocon Bristol Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Nicholas A. Meanwell
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Robert Borzilleri
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
14
|
Yang MG, Beaudoin-Bertrand M, Xiao Z, Marcoux D, Weigelt CA, Yip S, Wu DR, Ruzanov M, Sack JS, Wang J, Yarde M, Li S, Shuster DJ, Xie JH, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Khandelwal P, Karmakar A, Basha M, Babu V, Gupta AK, Mathur A, Salter-Cid L, Denton R, Zhao Q, Dhar TGM. Tricyclic-Carbocyclic RORγt Inverse Agonists-Discovery of BMS-986313. J Med Chem 2021; 64:2714-2724. [PMID: 33591748 DOI: 10.1021/acs.jmedchem.0c01992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SAR efforts directed at identifying RORγt inverse agonists structurally different from our clinical compound 1 (BMS-986251) led to tricyclic-carbocyclic analogues represented by 3-7 and culminated in the identification of 3d (BMS-986313), with structural differences distinct from 1. The X-ray co-crystal structure of 3d with the ligand binding domain of RORγt revealed several key interactions, which are different from 1. The in vitro and in vivo PK profiles of 3d are described. In addition, we demonstrate robust efficacy of 3d in two preclinical models of psoriasis-the IMQ-induced skin lesion model and the IL-23-induced acanthosis model. The efficacy seen with 3d in these models is comparable to the results observed with 1.
Collapse
Affiliation(s)
- Michael G Yang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Myra Beaudoin-Bertrand
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - David Marcoux
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Carolyn A Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - John S Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Melissa Yarde
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - David J Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jenny H Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Mary T Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Ananta Karmakar
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Mushkin Basha
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Venkatesh Babu
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India
| | - Arvind Mathur
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Luisa Salter-Cid
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - T G Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|