1
|
Haque A, Alenezi KM, Alsukaibi AKD, Al-Otaibi AA, Wong WY. Water-Soluble Small Organic Fluorophores for Oncological Theragnostic Applications: Progress and Development. Top Curr Chem (Cham) 2024; 382:14. [PMID: 38671325 DOI: 10.1007/s41061-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Ahmed A Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
2
|
Xanthene dyes for cancer imaging and treatment: A material odyssey. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Kilic E, Elmazoglu Z, Almammadov T, Kepil D, Etienne T, Marion A, Gunbas G, Kolemen S. Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2022; 5:2754-2767. [PMID: 35537187 PMCID: PMC9214761 DOI: 10.1021/acsabm.2c00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
Abstract
Activity-based theranostic photosensitizers are highly attractive in photodynamic therapy as they offer enhanced therapeutic outcome on cancer cells with an imaging opportunity at the same time. However, photosensitizers (PS) cores that can be easily converted to activity-based photosensitizers (aPSs) are still quite limited in the literature. In this study, we modified the dicyanomethylene-4H-chromene (DCM) core with a heavy iodine atom to get two different PSs (DCMO-I, I-DCMO-Cl) that can be further converted to aPS after simple modifications. The effect of iodine positioning on singlet oxygen generation capacity was also evaluated through computational studies. DCMO-I showed better performance in solution experiments and further proved to be a promising phototheranostic scaffold via cell culture studies. Later, a cysteine (Cys) activatable PS based on the DCMO-I core (DCMO-I-Cys) was developed, which induced selective photocytotoxicity along with a fluorescence turn-on response in Cys rich cancer cells.
Collapse
Affiliation(s)
- Eda Kilic
- Department
of Chemistry, Koç University, 34450 Istanbul, Turkey
| | - Zubeyir Elmazoglu
- Department
of Chemistry, Middle East Technical University
(METU), 06800, Ankara, Turkey
| | | | - Dilay Kepil
- Department
of Chemistry, Middle East Technical University
(METU), 06800, Ankara, Turkey
| | | | - Antoine Marion
- Department
of Chemistry, Middle East Technical University
(METU), 06800, Ankara, Turkey
| | - Gorkem Gunbas
- Department
of Chemistry, Middle East Technical University
(METU), 06800, Ankara, Turkey
| | - Safacan Kolemen
- Department
of Chemistry, Koç University, 34450 Istanbul, Turkey
- Surface
Science and Technology Center (KUYTAM), Koç University, 34450 Istanbul, Turkey
- Boron
and Advanced Materials Application and Research Center, Koç University, 34450 Istanbul, Turkey
- TUPRAS Energy
Center (KUTEM), Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
4
|
Ma H, Long S, Cao J, Xu F, Zhou P, Zeng G, Zhou X, Shi C, Sun W, Du J, Han K, Fan J, Peng X. New Cy5 photosensitizers for cancer phototherapy: a low singlet-triplet gap provides high quantum yield of singlet oxygen. Chem Sci 2021; 12:13809-13816. [PMID: 34760166 PMCID: PMC8549779 DOI: 10.1039/d1sc04570a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
Highly efficient triplet photosensitizers (PSs) have attracted increasing attention in cancer photodynamic therapy where photo-induced reactive oxygen species (ROSs, such as singlet oxygen) are produced via singlet–triplet intersystem crossing (ISC) of the excited photosensitizer to kill cancer cells. However, most PSs exhibit the fatal defect of a generally less-than-1% efficiency of ISC and low yield of ROSs, and this defect strongly impedes their clinical application. In the current work, a new strategy to enhance the ISC and high phototherapy efficiency has been developed, based on the molecular design of a thio-pentamethine cyanine dye (TCy5) as a photosensitizer. The introduction of an electron-withdrawing group at the meso-position of TCy5 could dramatically reduce the singlet–triplet energy gap (ΔEst) value (from 0.63 eV to as low as 0.14 eV), speed up the ISC process (τISC = 1.7 ps), prolong the lifetime of the triplet state (τT = 319 μs) and improve singlet oxygen (1O2) quantum yield to as high as 99%, a value much higher than those of most reported triplet PSs. Further in vitro and in vivo experiments have shown that TCy5-CHO, with its efficient 1O2 generation and good biocompatibility, causes an intense tumor ablation in mice. This provides a new strategy for designing ideal PSs for cancer photo-therapy. The electron-withdrawing group at the meso-position of Thio-Cy5 could dramatically reduce the singlet–triplet energy gap, and speed up the intersystem crossing process.![]()
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology Panjin Campus Panjin 124221 China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457, Zhongshan Road Dalian 116023 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| |
Collapse
|