1
|
Wang L, Linares-Otoya V, Liu Y, Mettal U, Marner M, Armas-Mantilla L, Willbold S, Kurtán T, Linares-Otoya L, Schäberle TF. Discovery and Biosynthesis of Antimicrobial Phenethylamine Alkaloids from the Marine Flavobacterium Tenacibaculum discolor sv11. JOURNAL OF NATURAL PRODUCTS 2022; 85:1039-1051. [PMID: 35416664 DOI: 10.1021/acs.jnatprod.1c01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 μg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 μg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 μg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Virginia Linares-Otoya
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
- Research Centre for Sustainable Development Uku Pacha, 13011 Trujillo, Peru
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Lizbeth Armas-Mantilla
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
- Research Centre for Sustainable Development Uku Pacha, 13011 Trujillo, Peru
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, H-4002 Debrecen, Hungary
| | - Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Zubenko AA, Morkovnik AS, Divaeva LN, Sochnev VS, Demidov OP, Klimenko AI, Fetisov LN, Bodryakov AN, Bodryakova MA, Borodkin GS. New type of recyclization in 3,4-dihydroisoquinolines in the synthesis of β-(o-indazolylaryl)ethylamines and their 7-azaindazolyl analogues. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Maqbool M, Rajvansh R, Srividya K, Hoda N. Deciphering the robustness of pyrazolo-pyridine carboxylate core structure-based compounds for inhibiting α-synuclein in transgenic C. elegans model of Synucleinopathy. Bioorg Med Chem 2020; 28:115640. [PMID: 32773095 DOI: 10.1016/j.bmc.2020.115640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD), a calamitous neurodegenerative disorder with no cure till date, is closely allied with the misfolding and aggregation of α-Synuclein (α -Syn). Inhibition of α-Syn aggregation is one of the optimistic approaches for the treatment for PD. Here, we carried out hypothesis-driven studies towards synthesising a series of pyrazolo-pyridine carboxylate containing compounds (7a-7m) targeted at reducing deleterious α-Syn aggregation. The target compounds were synthesized through multi-step organic synthesis reactions. From docking studies, compounds 7b, 7g and 7i displayed better interaction with the key residues of α-Syn with values: -6.8, -8.9 and -7.2 Kcal/mol, respectively. In vivo transgenic C. elegans model of Synucleinopathy was used to evaluate the ability of the designed and synthesized compounds to inhibit α-Syn aggregation. These lead compounds 7b, 7g and 7i displayed 1.7, 2.4 and 1.5-fold inhibition of α-Syn with respect to the control. Further, the strategy of employing pyrazolo-pyridine-based compounds worked with success and these scaffolds could be further modified and validated for betterment of endpoints associated with PD.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Drug Design and Synthesis Lab, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Roshani Rajvansh
- Laboratory of Functional Genomics and Molecular Toxicology, CSIR-Central Drug Research Institute, (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kottapalli Srividya
- Laboratory of Functional Genomics and Molecular Toxicology, CSIR-Central Drug Research Institute, (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Nasimul Hoda
- Drug Design and Synthesis Lab, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Li X, Hu X, Liu Z, Yang J, Mei B, Dong Y, Liu G. Ruthenium-Catalyzed Selectively Oxidative C–H Alkenylation of N-Acylated Aryl Sulfonamides by Using Molecular Oxygen as an Oxidant. J Org Chem 2020; 85:5916-5926. [DOI: 10.1021/acs.joc.0c00242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Xiao Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zijie Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingshu Yang
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| | - Bo Mei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, China
| |
Collapse
|