1
|
Zheng X, Wang R, Ma B, Zhang J, Qian X, Fang Q, An J. rTMS reduces spatial learning and memory deficits induced by sleep deprivation possibly via suppressing the expression of kynurenine 3-monooxygenase in rats. Behav Brain Res 2024; 456:114704. [PMID: 37838245 DOI: 10.1016/j.bbr.2023.114704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION Impairment of learning and memory caused by sleep deprivation is a common symptom that significantly affects quality of life. Repetitive transcranial magnetic stimulation (rTMS) is a promising approach to exert a positive effect on cognitive impairment. However, there is less known about the mechanism of rTMS for learning and memory induced by chronic REM sleep deprivation (CRSD). This study was to detect the effects of rTMS on spatial learning and memory deficits by CRSD and explore possible mechanism. METHODS Sixty male Sprague-Dawley rats were randomly divided into four groups: wide platform (Control), sleep deprivation (SD), sleep deprivation + rTMS (TMS), and sleep deprivation + sham rTMS (Sham-TMS). Morris water maze (MWM) and open field test (OFT) assessed spatial learning and memory and anxiety of rats with pre/post-intervention. Golgi staining and transmission electron microscope (TEM) were used to observe structural variations of synapses in the hippocampus. The alteration in gene expression of different groups was analyzed by RNA-sequencing (RNA-Seq), and the key gene was screened and identified by quantitative polymerase chain reaction (qPCR) and subsequently verified with western blotting and immunofluorescence. RESULTS The behavioral test showed spatial learning and memory decreased and anxiety increased in the SD group compared to the Control and TMS groups. Moreover, rTMS improved spine density, ultrastructural damage, and quantities of synapses. In accordance with RNA-Seq, 56 differentially expressed genes (DEGs) were identified by comparing alternations in four groups and concentrated on kynurenine 3-monooxygenase (KMO). The expression of KMO increased significantly in rats of the SD group compared to the Control and TMS groups identified by qPCR, western blotting, and immunofluorescence. CONCLUSION 1 Hz rTMS alleviated spatial learning and memory deficits induced by CRSD probably via down-regulating the expression of KMO and improving the structure and quantity of synapses in the hippocampus of rats.
Collapse
Affiliation(s)
- Xin Zheng
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Ruoguo Wang
- School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Baofeng Ma
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaoyan Qian
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qiwu Fang
- Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jianxiong An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China; Department of Anesthesiology, Pain & Sleep Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Lu Y, Shao M, Wu T. Kynurenine-3-monooxygenase: A new direction for the treatment in different diseases. Food Sci Nutr 2020; 8:711-719. [PMID: 32148781 PMCID: PMC7020307 DOI: 10.1002/fsn3.1418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
Kynurenine-3-monooxygenase (KMO) is an enzyme that relies on nicotinamide adenine dinucleotide phosphate (NADP), a key site in the kynurenine pathway (KP), which has great effects on neurological diseases, cancer, and peripheral inflammation. This review mainly pay attention to the research of KMO mechanism for the treatment of different diseases, and hopes to provide assistance for clinical and drug use. KMO controlling the chief division of the KP, which directly controls downstream product quinolinic acid (QUIN) and indirectly controls kynurenic acid (KYNA), plays an important role in many diseases, especially neurological diseases.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Harper MM, Woll AW, Evans LP, Delcau M, Akurathi A, Hedberg-Buenz A, Soukup DA, Boehme N, Hefti MM, Dutca LM, Anderson MG, Bassuk AG. Blast Preconditioning Protects Retinal Ganglion Cells and Reveals Targets for Prevention of Neurodegeneration Following Blast-Mediated Traumatic Brian Injury. Invest Ophthalmol Vis Sci 2019; 60:4159-4170. [PMID: 31598627 PMCID: PMC6785841 DOI: 10.1167/iovs.19-27565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Addison W. Woll
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Lucy P. Evans
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Michael Delcau
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Abhigna Akurathi
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Dana A. Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Nickolas Boehme
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States
| | - Laura M. Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Alexander G. Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|