1
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
2
|
Hypoxia and Extracellular Acidification as Drivers of Melanoma Progression and Drug Resistance. Cells 2021; 10:cells10040862. [PMID: 33918883 PMCID: PMC8070386 DOI: 10.3390/cells10040862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia and elevated extracellular acidification are prevalent features of solid tumors and they are often shown to facilitate cancer progression and drug resistance. In this review, we have compiled recent and most relevant research pertaining to the role of hypoxia and acidification in melanoma growth, invasiveness, and response to therapy. Melanoma represents a highly aggressive and heterogeneous type of skin cancer. Currently employed treatments, including BRAF V600E inhibitors and immune therapy, often are not effective due to a rapidly developing drug resistance. A variety of intracellular mechanisms impeding the treatment were discovered. However, the tumor microenvironment encompassing stromal and immune cells, extracellular matrix, and physicochemical conditions such as oxygen level or acidity, may also influence the therapy effectiveness. Hypoxia and acidification are able to reprogram the metabolism of melanoma cells, enhance their survival and invasiveness, as well as promote the immunosuppressive environment. For this reason, these physicochemical features of the melanoma niche and signaling pathways related to them emerge as potential therapeutic targets.
Collapse
|
3
|
Abstract
The substitution reaction of glycal (1,2-unsaturated cyclic carbohydrate derivative)
at C1 by allyl rearrangement in the presence of a catalyst is called Ferrier type-I rearrangement.
2,3-Unsaturated glycosides are usually obtained from glycals through Ferrier
type-I rearrangement, and their potential biological activities have gradually attracted
widespread attention of researchers. This review summarizes recent advances (2009-
present) in the application of various types of catalysts to Ferrier type-I rearrangement reactions,
including their synthesis, mechanism, and application of 2, 3-unsaturated glycosides.
Collapse
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhengliang Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Youxian Dong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaoxia Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaxia Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Arosio P, Comito G, Orsini F, Lascialfari A, Chiarugi P, Ménard-Moyon C, Nativi C, Richichi B. Conjugation of a GM3 lactone mimetic on carbon nanotubes enhances the related inhibition of melanoma-associated metastatic events. Org Biomol Chem 2018; 16:6086-6095. [DOI: 10.1039/c8ob01817k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes conjugated to a mimetic of a melanoma-associated antigen interfere with adhesion, motility, and invasiveness of human melanoma cells.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Physics and INSTM
- University of Milano
- 20133 Milan
- Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences
- Biochemistry
- Human Health Medical School
- University of Florence
- 50134 Firenze
| | - Francesco Orsini
- Department of Physics and INSTM
- University of Milano
- 20133 Milan
- Italy
| | | | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences
- Biochemistry
- Human Health Medical School
- University of Florence
- 50134 Firenze
| | - Cécilia Ménard-Moyon
- University of Strasbourg
- CNRS
- Immunology
- Immunopathology and Therapeutic Chemistry
- 67000 Strasbourg
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto F.no
- Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto F.no
- Italy
| |
Collapse
|
5
|
Richard E, Pifferi C, Fiore M, Samain E, Le Gouëllec A, Fort S, Renaudet O, Priem B. Chemobacterial Synthesis of a Sialyl-Tn Cyclopeptide Vaccine Candidate. Chembiochem 2017. [DOI: 10.1002/cbic.201700240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emeline Richard
- Université Grenoble Alpes and CNRS; CERMAV; 601, rue de la chimie 38000 Grenoble France
| | - Carlo Pifferi
- Université Grenoble Alpes and CNRS; DCM; 38000 Grenoble France
| | - Michele Fiore
- Université Grenoble Alpes and CNRS; DCM; 38000 Grenoble France
| | - Eric Samain
- Université Grenoble Alpes and CNRS; CERMAV; 601, rue de la chimie 38000 Grenoble France
| | - Audrey Le Gouëllec
- Laboratoire TIMC-IMAG CNRS UMR 5525; Faculté de Médecine; 38100 Grenoble France
| | - Sébastien Fort
- Université Grenoble Alpes and CNRS; CERMAV; 601, rue de la chimie 38000 Grenoble France
| | | | - Bernard Priem
- Université Grenoble Alpes and CNRS; CERMAV; 601, rue de la chimie 38000 Grenoble France
| |
Collapse
|