1
|
Zou J, Wu B, Tao Y, Liu Z, Zhao H, Wang P, Liang Y, Qu J, Zhang S. Inhibition of the rapamycin-insensitive mTORC1 /4E-BP1 axis attenuates TGF-β1-induced fibrotic response in human Tenon's fibroblasts. Exp Eye Res 2024; 244:109927. [PMID: 38750784 DOI: 10.1016/j.exer.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Subconjunctival fibrosis is the major cause of failure in both conventional and modern minimally invasive glaucoma surgeries (MIGSs) with subconjunctival filtration. The search for safe and effective anti-fibrotic agents is critical for improving long-term surgical outcomes. In this study, we investigated the effect of inhibiting the rapamycin-insensitive mTORC1/4E-BP1 axis on the transforming growth factor-beta 1(TGF-β1)-induced fibrotic responses in human Tenon's fibroblasts (HTFs), as well as in a rat model of glaucoma filtration surgery (GFS). Primary cultured HTFs were treated with 3 ng/mL TGF-β1 for 24 h, followed by treatment with 10 μM CZ415 for additional 24 h. Rapamycin (10 μM) was utilized as a control for mTORC1/4E-BP1 signaling insensitivity. The expression levels of fibrosis-associated molecules were measured using quantitative real-time PCR, Western blotting, and immunofluorescence analysis. Cell migration was assessed through the scratch wound assay. Additionally, a rat model of GFS was employed to evaluate the anti-fibrotic effect of CZ415 in vivo. Our findings indicated that both rapamycin and CZ415 treatment significantly reduced the TGF-β1-induced cell proliferation, migration, and the expression of pro-fibrotic factors in HTFs. CZ415 also more effectively inhibited TGF-β1-mediated collagen synthesis in HTFs compared to rapamycin. Activation of mTORC1/4E-BP signaling following TGF-β1 exposure was highly suppressed by CZ415 but was only modestly inhibited by rapamycin. Furthermore, CZ415 was found to decrease subconjunctival collagen deposition in rats post GFS. Our results suggest that rapamycin-insensitive mTORC1/4E-BP1 signaling plays a critical role in TGF-β1-driven collagen synthesis in HTFs. This study demonstrated that inhibition of the mTORC1/4E-BP1 axis offers superior anti-fibrotic efficacy compared to rapamycin and represents a promising target for improving the success rate of both traditional and modern GFSs.
Collapse
Affiliation(s)
- Jiayu Zou
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Binrong Wu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yan Tao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Zuimeng Liu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Huanyu Zhao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Pin Wang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Liang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Wenzhou, China; Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Wenzhou, China.
| | - Shaodan Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China; National Clinical Research Center for Ocular Diseases, Wenzhou, China; Glaucoma Research Institute, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165295. [PMID: 36014530 PMCID: PMC9413691 DOI: 10.3390/molecules27165295] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family. The kinase exists in the forms of two complexes, mTORC1 and mTORC2, and it participates in cell growth, proliferation, metabolism, and survival. The kinase activity is closely related to the occurrence and development of multiple human diseases. Inhibitors of mTOR block critical pathways to produce antiviral, anti-inflammatory, antiproliferative and other effects, and they have been applied to research in cancer, inflammation, central nervous system diseases and viral infections. Existing mTOR inhibitors are commonly divided into mTOR allosteric inhibitors, ATP-competitive inhibitors and dual binding site inhibitors, according to their sites of action. In addition, there exist several dual-target mTOR inhibitors that target PI3K, histone deacetylases (HDAC) or ataxia telangiectasia mutated and Rad-3 related (ATR) kinases. This review focuses on the structure of mTOR protein and related signaling pathways as well as the structure and characteristics of various mTOR inhibitors. Non-rapalog allosteric inhibitors will open new directions for the development of new therapeutics specifically targeting mTORC1. The applications of ATP-competitive inhibitors in central nervous system diseases, viral infections and inflammation have laid the foundation for expanding the indications of mTOR inhibitors. Both dual-binding site inhibitors and dual-target inhibitors are beneficial in overcoming mTOR inhibitor resistance.
Collapse
Affiliation(s)
- Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Qi Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| |
Collapse
|
3
|
Oskouie AA, Ahmadi MS, Taherkhani A. Identification of Prognostic Biomarkers in Papillary Thyroid Cancer and Developing Non-Invasive Diagnostic Models Through Integrated Bioinformatics Analysis. Microrna 2022; 11:73-87. [PMID: 35068400 DOI: 10.2174/2211536611666220124115445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most frequent subtype of thyroid carcinoma, mainly detected in patients with benign thyroid nodules (BTN). Due to the invasiveness of accurate diagnostic tests, there is a need to discover applicable biomarkers for PTC. So, in this study, we aimed to identify the genes associated with prognosis in PTC. Besides, we performed a machine learning tool to develop a non-invasive diagnostic approach for PTC. METHODS For the study purposes, the miRNA dataset GSE130512 was downloaded from the GEO database and then analyzed to identify the common differentially expressed miRNAs in patients with non-metastatic PTC (nm-PTC)/metastatic PTC (m-PTC) compared with BTNs. The SVM was also applied to differentiate patients with PTC from those patients with BTN using the common DEMs. A protein-protein interaction network was also constructed based on the targets of the common DEMs. Next, functional analysis was performed, the hub genes were determined, and survival analysis was then executed. RESULTS A total of three common miRNAs were found to be differentially expressed among patients with nm-PTC/m-PTC compared with BTNs. In addition, it was established that the autophagosome maturation, ciliary basal body-plasma membrane docking, antigen processing as ubiquitination & proteasome degradation, and class I MHC mediated antigen processing & presentation are associated with the pathogenesis of PTC. Furthermore, it was illustrated that RPS6KB1, CCNT1, SP1, and CHD4 might serve as new potential biomarkers for PTC prognosis. CONCLUSION RPS6KB1, CCNT1, SP1, and CHD4 may be considered new potential biomarkers used for prognostic aims in PTC. However, performing validation tests is inevitable in the future.
Collapse
Affiliation(s)
- Afsaneh Arefi Oskouie
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Ahmadi
- Department of Otorhinolaryngology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Qiu HY, Wang PF, Zhang M. A patent review of mTOR inhibitors for cancer therapy (2011-2020). Expert Opin Ther Pat 2021; 31:965-975. [PMID: 34098816 DOI: 10.1080/13543776.2021.1940137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) kinase is a central component in the PI3K/Akt/mTOR pathway and plays a crucial role in tumor biology, making it one appealing therapeutic target. In the past decade, the mTORi (mTOR inhibitor) development field has made great progress, with more agents entering key trials and the proposal of third-generation mTORi concept. Yet to achieve significant clinical success, combined efforts from multiple disciplines are ever needed. AREAS COVERED This review focuses on the progress of mTORi development with anticancer potential from the perspective of the patent literature proposed between 2011 and 2020. EXPERT OPINION The highly complex regulatory mechanism network of mTOR proposes huge challenges to the development of clinically efficient mTORis. While in-depth biological research and fundamental medchemistry research are of importance to provide guidelines for improving mTORis, new technologies to pre-diagnose applicable populations is another key to provide precise personal cancer treatment. New mTOR agents are ever needed to tackle the common problems of side effects and drug resistance.
Collapse
Affiliation(s)
- Han-Yue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Peng-Fei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Zhang J. Targeting mTOR by CZ415 Suppresses Cell Proliferation and Promotes Apoptosis via Lipin-1 in Cervical Cancer In Vitro and In Vivo. Reprod Sci 2021; 28:524-531. [PMID: 32944878 DOI: 10.1007/s43032-020-00313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
CZ415, a novel inhibitor of mammalian target of rapamycin (mTOR) kinase, has demonstrated anti-tumor activity in several types of cancer. However, its biological function and underlying mechanism of action in cervical cancer (CC) have not been fully studied. Two CC cell lines (Hela and Siha) were treated with increasing concentrations of CZ415. Cell viability was tested with the CCK-8 assay, cell proliferation was determined by Edu staining and the colony formation assay, and apoptosis was determined by flow cytometry and Hoechst 33342 staining. Protein expression was evaluated by western blotting. A nude mouse xenograft model was used to confirm the anti-tumor activity of CZ415 in vivo. Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining were performed on samples of tumor tissue. Results showed that CZ415 inhibited CC cell survival in a dose- and time-dependent manner, and 100 nanomolar and 48 h were the optimal conditions. In vitro and in vivo experiments showed that treatment with CZ415 significantly inhibited spheroid formation, cell proliferation, and tumor growth. Further studies showed that the anti-cancer effects of CZ415 were due to an induction of apoptosis, which was accompanied by an upregulation of Bax and downregulation of Bcl-2 through Lipin-1. CZ415 also reduced the levels of mTOR/STAT3 expression. However, these phenotypic changes were reversed by overexpression of Lipin-1. Our results suggest that the novel mTOR inhibitor CZ415 mediates tumor malignancy via Lipin-1 and might be useful for treating CC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Women's Health Care, Xiaonan District Maternity and Child Healthcare Hospital, Xiaogan City, 432000, Hubei Province, China.
| |
Collapse
|
6
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Xu T, Sun D, Chen Y, Ouyang L. Targeting mTOR for fighting diseases: A revisited review of mTOR inhibitors. Eur J Med Chem 2020; 199:112391. [DOI: 10.1016/j.ejmech.2020.112391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
8
|
Good RB, Eley JD, Gower E, Butt G, Blanchard AD, Fisher AJ, Nanthakumar CB. A high content, phenotypic 'scar-in-a-jar' assay for rapid quantification of collagen fibrillogenesis using disease-derived pulmonary fibroblasts. BMC Biomed Eng 2019; 1:14. [PMID: 32903343 PMCID: PMC7422573 DOI: 10.1186/s42490-019-0014-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Excessive extracellular matrix (ECM) deposition is a hallmark feature in fibrosis and tissue remodelling diseases. Typically, mesenchymal cells will produce collagens under standard 2D cell culture conditions, however these do not assemble into fibrils. Existing assays for measuring ECM production are often low throughput and not disease relevant. Here we describe a robust, high content, pseudo-3D phenotypic assay to quantify mature fibrillar collagen deposition which is both physiologically relevant and amenable to high throughput compound screening. Using pulmonary fibroblasts derived from patients with idiopathic pulmonary fibrosis (IPF), we developed the 'scar-in-a-jar' assay into a medium-throughput phenotypic assay to robustly quantify collagen type I deposition and other extracellular matrix (ECM) proteins over 72 h. RESULTS This assay utilises macromolecular crowding to induce an excluded volume effect and enhance enzyme activity, which in combination with TGF-β1 stimulation significantly accelerates ECM production. Collagen type I is upregulated approximately 5-fold with a negligible effect on cell number. We demonstrate the robustness of the assay achieving a Z prime of approximately 0.5, and % coefficient of variance (CV) of < 5 for the assay controls SB-525334 (ALK5 inhibitor) and CZ415 (mTOR inhibitor). This assay has been used to confirm the potency of a number of potential anti-fibrotic agents. Active compounds from the 'scar-in-a-jar' assay can be further validated for other markers of ECM deposition and fibroblast activation such as collagen type IV and α-smooth muscle actin exhibiting a 4-fold and 3-fold assay window respectively. CONCLUSION In conclusion, we have developed 'scar -in-a-jar is' into a robust disease-relevant medium-throughput in vitro assay to accurately quantify ECM deposition. This assay may enable iterative compound profiling for IPF and other fibroproliferative and tissue remodelling diseases.
Collapse
Affiliation(s)
- Robert B. Good
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Jessica D. Eley
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Elaine Gower
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Genevieve Butt
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Andrew D. Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Andrew J. Fisher
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust and Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Carmel B. Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| |
Collapse
|
9
|
Thomson DW, Poeckel D, Zinn N, Rau C, Strohmer K, Wagner AJ, Graves AP, Perrin J, Bantscheff M, Duempelfeld B, Kasparcova V, Ramanjulu JM, Pesiridis GS, Muelbaier M, Bergamini G. Discovery of GSK8612, a Highly Selective and Potent TBK1 Inhibitor. ACS Med Chem Lett 2019; 10:780-785. [PMID: 31097999 DOI: 10.1021/acsmedchemlett.9b00027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
The serine/threonine protein kinase TBK1 (Tank-binding Kinase-1) is a noncanonical member of the IkB kinase (IKK) family. This kinase regulates signaling pathways in innate immunity, oncogenesis, energy homeostasis, autophagy, and neuroinflammation. Herein, we report the discovery and characterization of a novel potent and highly selective TBK1 inhibitor, GSK8612. In cellular assays, this small molecule inhibited toll-like receptor (TLR)3-induced interferon regulatory factor (IRF)3 phosphorylation in Ramos cells and type I interferon (IFN) secretion in primary human mononuclear cells. In THP1 cells, GSK8612 was able to inhibit secretion of interferon beta (IFNβ) in response to dsDNA and cGAMP, the natural ligand for STING. GSK8612 is a TBK1 small molecule inhibitor displaying an excellent selectivity profile and therefore represents an ideal probe to further dissect the biology of TBK1 in models of immunity, neuroinflammation, obesity, or cancer.
Collapse
Affiliation(s)
- Douglas W. Thomson
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Daniel Poeckel
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nico Zinn
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christina Rau
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Katrin Strohmer
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne J. Wagner
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alan P. Graves
- Data and Computational Sciences, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Jessica Perrin
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marcus Bantscheff
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Birgit Duempelfeld
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Viera Kasparcova
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Joshi M. Ramanjulu
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - G. Scott Pesiridis
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Marcel Muelbaier
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Giovanna Bergamini
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
10
|
Abdel-Maksoud MS, El-Gamal MI, Benhalilou DR, Ashraf S, Mohammed SA, Oh CH. Mechanistic/mammalian target of rapamycin: Recent pathological aspects and inhibitors. Med Res Rev 2018; 39:631-664. [PMID: 30251347 DOI: 10.1002/med.21535] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR), also known as the mechanistic target of rapamycin, regulates many normal cell processes such as transcription, cell growth, and autophagy. Overstimulation of mTOR by its ligands, amino acids, sugars, and/or growth factors leads to physiological disorders, including cancer and neurodegenerative diseases. In this study, we reviewed the recent advances regarding the mechanism that involves mTOR in cancer, aging, and neurodegenerative diseases. The chemical and biological properties of recently reported small molecules that function as mTOR kinase inhibitors, including adenosine triphosphate-competitive inhibitors and dual mTOR/PI3K inhibitors, have also been reviewed. We focused on the reports published in the literature from 2012 to 2017.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Dalia Reyane Benhalilou
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sandy Ashraf
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea.,Department of Biomolecular Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
11
|
Talele TT. Natural-Products-Inspired Use of the gem-Dimethyl Group in Medicinal Chemistry. J Med Chem 2017; 61:2166-2210. [DOI: 10.1021/acs.jmedchem.7b00315] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| |
Collapse
|
12
|
The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415. Biochem Biophys Res Commun 2017; 487:494-499. [DOI: 10.1016/j.bbrc.2017.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
|
13
|
Yin G, Fan J, Zhou W, Ding Q, Zhang J, Wu X, Tang P, Zhou H, Wan B, Yin G. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo. Oncotarget 2017; 8:82027-82036. [PMID: 29137241 PMCID: PMC5669867 DOI: 10.18632/oncotarget.18303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo, CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo. CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.
Collapse
Affiliation(s)
- Gang Yin
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Orthopaedics, Changzhou Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213017, China
| | - Jin Fan
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qingfeng Ding
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuan Wu
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pengyu Tang
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Zhou
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Bowen Wan
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guoyong Yin
- Department of Spine Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|