1
|
Xu L, Xie Y, Gou Q, Cai R, Bao R, Huang Y, Tang R. HER2-targeted therapies for HER2-positive early-stage breast cancer: present and future. Front Pharmacol 2024; 15:1446414. [PMID: 39351085 PMCID: PMC11439691 DOI: 10.3389/fphar.2024.1446414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer (BC) has the second highest incidence among cancers and is the leading cause of death among women worldwide. The human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 20%-30% of BC patients. The development of HER2-targeted drugs, including monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs) and antibody-drug conjugates (ADCs), has improved the operation rate and pathological remission rate and reduced the risk of postoperative recurrence for HER2-positive early-stage BC (HER2+ EBC) patients. This review systematically summarizes the mechanisms, resistance, therapeutic modalities and safety of HER2-targeted drugs and helps us further understand these drugs and their use in clinical practice for patients with HER2+ EBC.
Collapse
Affiliation(s)
- Luying Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Cai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Bao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruisi Tang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhang Y, Ding M, Wang L, Yin S, Zhang L, Cao X, Chen Z, Li W, Guo Q, Zhu S, Lu W, Yang T. Synthesis and biological evaluation of novel quaternary ammonium antibody drug conjugates based on camptothecin derivatives. PLoS One 2023; 18:e0292871. [PMID: 38113206 PMCID: PMC10729962 DOI: 10.1371/journal.pone.0292871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023] Open
Abstract
Antibody drug conjugates (ADCs) have emerged as a highly promising class of cancer therapeutics, comprising antibodies, effector molecules, and linkers. Among them, DS-8201a with DXd as the effector molecule, has shown remarkable anti-tumor efficacy against solid tumors, sparking a surge of interest in ADCs with camptothecin derivatives as ADC effector molecules. In this study, we introduced and successfully constructed quaternary ammonium ADCs utilizing camptothecin derivatives WL-14 and CPTS-1 for the first time. All four ADCs displayed excellent stability under physiological conditions and in plasma, facilitating their prolonged circulation in vivo. Moreover, the four ADCs, employing Val-Cit or Val-Ala dipeptide linkers effectively achieved complete release of the effector molecules via cathepsin B. Although, the in vitro antitumor activity of these ADCs was comparatively limited, the development of quaternary ammonium ADCs based on novel camptothecin derivatives as effector molecules is still a viable and promising strategy. Significantly, our study provides valuable insights into the crucial role of linker optimization in ADCs design.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Sicheng Yin
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Liang Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xuemei Cao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhiyang Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Weinan Li
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Qingsong Guo
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, PR China
- Shanghai Key Laboratory of Intelligent Drug Design and Manufacturing, East China Normal University, Shanghai, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
- Shanghai Key Laboratory of Intelligent Drug Design and Manufacturing, East China Normal University, Shanghai, PR China
| | - Tong Yang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Najminejad Z, Dehghani F, Mirzaei Y, Mer AH, Saghi SA, Abdolvahab MH, Bagheri N, Meyfour A, Jafari A, Jahandideh S, Gharibi T, Amirkhani Z, Delam H, Mashatan N, Shahsavarani H, Abdollahpour-Alitappeh M. Clinical perspective: Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Mol Ther 2023; 31:1874-1903. [PMID: 36950736 PMCID: PMC10362395 DOI: 10.1016/j.ymthe.2023.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a promising class of cancer biopharmaceuticals that exploit the specificity of a monoclonal antibody (mAb) to selectively deliver highly cytotoxic small molecules to targeted cancer cells, leading to an enhanced therapeutic index through increased antitumor activity and decreased off-target toxicity. ADCs hold great promise for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after the approval and tremendous success of trastuzumab emtansine and trastuzumab deruxtecan, representing a turning point in both HER2-positive breast cancer treatment and ADC technology. Additionally and importantly, a total of 29 ADC candidates are now being investigated in different stages of clinical development for the treatment of HER2-positive breast cancer. The purpose of this review is to provide an insight into the ADC field in cancer treatment and present a comprehensive overview of ADCs approved or under clinical investigation for the treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Zohreh Najminejad
- Department of Internal Medicine, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913355, Iran
| | - Fatemeh Dehghani
- Student Research Committee, Larestan University of Medical Sciences, Larestan 7431895639, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Erbil 44001, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Seyyed Amirreza Saghi
- Student Research Committee, Larestan University of Medical Sciences, Larestan 7431895639, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733450, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene co, Tehran 1387837584, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Zahra Amirkhani
- Student Research Committee, Larestan University of Medical Sciences, Larestan 7431895639, Iran
| | - Hamed Delam
- Student Research Committee, Larestan University of Medical Sciences, Larestan 7431895639, Iran
| | - Noushin Mashatan
- Graduated, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963113, Iran.
| | | |
Collapse
|
4
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
5
|
Marei HE, Cenciarelli C, Hasan A. Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int 2022; 22:255. [PMID: 35964048 PMCID: PMC9375290 DOI: 10.1186/s12935-022-02679-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Pettinato MC. Introduction to Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10040042. [PMID: 34842621 PMCID: PMC8628511 DOI: 10.3390/antib10040042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are innovative biopharmaceutical products in which a monoclonal antibody is linked to a small molecule drug with a stable linker. Most of the ADCs developed so far are for treating cancer, but there is enormous potential for using ADCs to treat other diseases. Currently, ten ADCs have been approved by the United States Food and Drug Administration (FDA), and more than 90 ADCs are under worldwide clinical development. Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Tremendous strides have been made in antibody discovery, protein bioengineering, formulation, and delivery devices. This manuscript provides an overview of the biology, chemistry, and biophysical properties of each component of ADC design. This review summarizes the advances and challenges in the field to date, with an emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, drug-antibody ratio (DAR), and product development. The review emphasizes the lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications. The review discusses resistance mechanisms to ADCs, and give an opinion on future perspectives.
Collapse
Affiliation(s)
- Mark C Pettinato
- Department of Biomedical Engineering, School of Engineering, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064-0001, USA
| |
Collapse
|
7
|
Hadidi K, Bellucci MC, Dall'Angelo S, Leeson-Payne A, Rochford JJ, Esko JD, Tor Y, Volonterio A. Guanidinoneomycin-maleimide molecular transporter: synthesis, chemistry and cellular uptake. Org Biomol Chem 2021; 19:6513-6520. [PMID: 34254106 DOI: 10.1039/d1ob01101d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guanidinoglycosides are a class of non-cytotoxic molecular transporters capable of delivering high molecular weight bioactive cargos into cells at low nanomolar concentrations. Efficient bioconjugation with guanidinoglycosides has been previously demonstrated by utilizing a guanidinoneomycin decorated with a reactive but also unstable N-hydroxysuccinimmide ester-containing linker. Herein we report the synthesis, chemistry, and application of a new, stable guanidinoneomycin derivative armed with a highly specific maleimide moiety which allows for thiol-maleimide click chemistry, a highly popular bioconjugation strategy, widening the field of application of these intriguing and useful delivery vehicles.
Collapse
Affiliation(s)
- Kaivin Hadidi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, AB25 2ZD Aberdeen, UK
| | - Alasdair Leeson-Payne
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Justin J Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jeffery D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Alessandro Volonterio
- Department of Chemistry, Material and Chemical Engineer "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
8
|
Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res 2021; 31:1-17. [PMID: 33165241 DOI: 10.1097/cmr.0000000000000702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma continues to be an aggressive and deadly form of skin cancer while therapeutic options are continuously developing in an effort to provide long-term solutions for patients. Immunotherapeutic strategies incorporating antibody-drug conjugates (ADCs) have seen varied levels of success across tumor types and represent a promising approach for melanoma. This review will explore the successes of FDA-approved ADCs to date compared to the ongoing efforts of melanoma-targeting ADCs. The challenges and opportunities for future therapeutic development are also examined to distinguish how ADCs may better impact individuals with malignancies such as melanoma.
Collapse
Affiliation(s)
| | | | - Ninh M La-Beck
- Departments of Immunotherapeutics and Biotechnology
- Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | | | - Devin B Lowe
- Departments of Immunotherapeutics and Biotechnology
| |
Collapse
|
9
|
Molinelli C, Parisi F, Razeti MG, Arecco L, Cosso M, Fregatti P, Del Mastro L, Poggio F, Lambertini M. Trastuzumab emtansine (T-DM1) as adjuvant treatment of HER2-positive early breast cancer: safety and efficacy. Expert Rev Anticancer Ther 2020; 21:241-250. [PMID: 33245671 DOI: 10.1080/14737140.2021.1857243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: The prognosis of patients with HER2-positive early breast cancer has radically improved after the introduction of (neo)adjuvant anti-HER2 targeted therapy. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate combining the anticancer properties of the anti-HER2 agent trastuzumab and the antineoplastic cytotoxic drug DM1. After demonstrating to be an effective and safe treatment for patients with HER2-positive advanced breast cancer, the development of T-DM1 has moved to the early setting.Areas covered: The aim of this review is to explore the current role of T-DM1 in the treatment landscape of HER2-positive early breast cancer, focusing specifically on the efficacy and safety data available in the adjuvant setting.Expert opinion: T-DM1 is an effective and safe treatment option in the adjuvant setting for patients with HER2-positive breast cancer without pathologic complete response after standard neoadjuvant chemotherapy plus anti-HER2 targeted therapy. With the availability of more effective anti-HER2 targeted agents, including T-DM1, there is an urgent need for more chemotherapy de-escalation research efforts in the early setting.
Collapse
Affiliation(s)
- Chiara Molinelli
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Parisi
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Grazia Razeti
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luca Arecco
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maurizio Cosso
- Department of Radiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Piero Fregatti
- Department of Surgery, U.O.C. Clinica di Chirurgia Senologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Integrated Diagnostic Surgical Sciences, School of Medicine, University of Genova, Genova, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Francesca Poggio
- Department of Medical Oncology, Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| |
Collapse
|
10
|
Boni V, Sharma MR, Patnaik A. The Resurgence of Antibody Drug Conjugates in Cancer Therapeutics: Novel Targets and Payloads. Am Soc Clin Oncol Educ Book 2020; 40:1-17. [PMID: 32315240 DOI: 10.1200/edbk_281107] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody drug conjugates (ADCs) are an emerging class of therapeutics that consist of a cytotoxic agent linked covalently to an antibody, which is directed toward a specific cell surface target expressed by tumor cells and/or the microenvironment. ADCs leverage the specificity of the antibody such that it functions as a carrier to deliver the cytotoxic payload into the tumor. Four parameters are considered critical for this class of complex engineered therapeutics: target selection, antibody, cytotoxic payload, as well as conjugation and linker technology. The development of this class of drugs has proven more complex than expected. Several challenges have arisen, including a lack of true tumor antigen specificity, early release of the cytotoxic payload into the bloodstream due to linker instability, and low potency of the payload, resulting in either greater toxicity or lack of improved efficacy compared with unconjugated cytotoxics. The approval of trastuzumab emtansine in 2013 for HER2-positive breast cancer served as a proof of concept that ADCs have therapeutic application in solid tumors. Two novel ADCs have recently been approved: trastuzumab deruxtecan for HER2-positive breast cancer and enfortumab vedotin for locally advanced or metastatic urothelial cancer. Trastuzumab deruxtecan is distinguished by a unique biochemical structure with a novel cytotoxic payload, deruxtecan-a highly potent, topoisomerase I inhibitor. Enfortumab vedotin is directed toward nectin-4 and represents an example of successful and strategic target selection. This review focuses on the concepts underlying the choice of suitable targets and novel payloads, discusses specific examples of ADCs in preclinical and clinical development, and provides future directions related to this unique class of therapeutics.
Collapse
Affiliation(s)
- Valentina Boni
- START (South Texas Accelerated Research Therapeutics), Madrid, Spain.,Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Manish R Sharma
- START (South Texas Accelerated Research Therapeutics), Grand Rapids, MI
| | - Amita Patnaik
- START (South Texas Accelerated Research Therapeutics), San Antonio, TX
| |
Collapse
|
11
|
Graziani EI, Sung M, Ma D, Narayanan B, Marquette K, Puthenveetil S, Tumey LN, Bikker J, Casavant J, Bennett EM, Charati MB, Golas J, Hosselet C, Rohde CM, Hu G, Guffroy M, Falahatpisheh H, Finkelstein M, Clark T, Barletta F, Tchistiakova L, Lucas J, Rosfjord E, Loganzo F, O'Donnell CJ, Gerber HP, Sapra P. PF-06804103, A Site-specific Anti-HER2 Antibody-Drug Conjugate for the Treatment of HER2-expressing Breast, Gastric, and Lung Cancers. Mol Cancer Ther 2020; 19:2068-2078. [PMID: 32747418 DOI: 10.1158/1535-7163.mct-20-0237] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
The approval of ado-trastuzumab emtansine (T-DM1) in HER2+ metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1. We utilized an empirical conjugation site screening campaign to identify the engineered ĸkK183C and K290C residues as those that maximized in vivo ADC stability, efficacy, and safety for a four drug-antibody ratio (DAR) ADC with this linker-payload combination. PF-06804103 incorporates the following novel design elements: (i) a new auristatin payload with optimized pharmacodynamic properties, (ii) a cleavable linker for optimized payload release and enhanced antitumor efficacy, and (iii) an engineered cysteine site-specific conjugation approach that overcomes the traditional safety liabilities of conventional conjugates and generates a homogenous drug product with a DAR of 4. PF-06804103 shows (i) an enhanced efficacy against low HER2-expressing breast, gastric, and lung tumor models, (ii) overcomes in vitro- and in vivo-acquired T-DM1 resistance, and (iii) an improved safety profile by enhancing ADC stability, pharmacokinetic parameters, and reducing off-target toxicities. Herein, we showcase our platform approach in optimizing ADC design, resulting in the generation of the anti-HER2 ADC, PF-06804103. The design elements of identifying novel sites of conjugation employed in this study serve as a platform for developing optimized ADCs against other tumor-specific targets.
Collapse
Affiliation(s)
| | - Matthew Sung
- Pfizer Inc., Oncology Research & Development, Pearl River, New York.
| | - Dangshe Ma
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | - Bitha Narayanan
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | | | | | - L Nathan Tumey
- Pfizer Inc., World Wide Medicinal Chemistry, Groton, Connecticut
| | - Jack Bikker
- Pfizer Inc., World Wide Medicinal Chemistry, Groton, Connecticut
| | - Jeffrey Casavant
- Pfizer Inc., World Wide Medicinal Chemistry, Groton, Connecticut
| | - Eric M Bennett
- Pfizer Inc., BioMedicine Design, Cambridge, Massachusetts
| | - Manoj B Charati
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | - Jonathon Golas
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | | | - Cynthia M Rohde
- Pfizer Inc., Drug Safety Research & Development, Pearl River, New York
| | - George Hu
- Pfizer Inc., Drug Safety Research & Development, Pearl River, New York
| | - Magali Guffroy
- Pfizer Inc., Drug Safety Research & Development, Pearl River, New York
| | | | | | - Tracey Clark
- Pfizer Inc., BioMedicine Design, Groton, Connecticut
| | | | | | - Judy Lucas
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | - Edward Rosfjord
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | - Frank Loganzo
- Pfizer Inc., Oncology Research & Development, Pearl River, New York
| | | | | | - Puja Sapra
- Pfizer Inc., Oncology Research & Development, Pearl River, New York.
| |
Collapse
|
12
|
Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J Natl Cancer Inst 2020; 111:538-549. [PMID: 30859213 DOI: 10.1093/jnci/djz035] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are complex engineered therapeutics consisting of monoclonal antibodies, directed toward tumor-associated antigens, to which highly potent cytotoxic agents are attached using chemical linkers. This targeted drug delivery strategy couples the precision of the antibody targeting moiety with the cytocidal activity of the payload, which is generally too toxic on its own to be systemically administered. In this manner, ADCs confer a means to reduce off-target toxicities in patients by limiting the exposure of normal tissues to the payload, thus broadening the potential therapeutic window compared with traditional chemotherapy. The pace of ADC development is accelerating, with the number of investigational agents in human trials having more than tripled over the past 5 years, underscoring the enthusiasm for this transformative approach to cancer treatment. Here, we review the key structural elements of ADC design (antibody, linker, and payload), highlighting critical aspects and technological advances that have affected the clinical effectiveness of this class of biopharmaceuticals. The ADC field continues to evolve, including ongoing efforts aimed at improving target selection, developing payloads with varied mechanisms of action and increased potency, designing innovative bioconjugation strategies, as well as maximizing efficacy and tolerability in patients. An overview of the current clinical trial landscape is provided, with emphasis on the clinical experience of the four ADCs to have received regulatory approval to date, as well as additional promising candidates currently in late-stage clinical development in both solid tumor and hematological malignancies.
Collapse
Affiliation(s)
- Michael J Birrer
- Division of Hematology-Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL
| | - Kathleen N Moore
- Stephenson Department of Obstetrics and Gynecology, Oklahoma Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Sarah Cannon Research Institute, Nashville, TN
| | - Ilaria Betella
- Division of Hematology-Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL
| | | |
Collapse
|
14
|
Amani N, Dorkoosh FA, Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Curr Drug Deliv 2020; 17:23-51. [DOI: 10.2174/1567201816666191121145109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.
Collapse
Affiliation(s)
- Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems (NDDS) Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
15
|
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020; 38:107337. [PMID: 30633954 PMCID: PMC6614024 DOI: 10.1016/j.biotechadv.2019.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Higher plant constituents have afforded clinically available anticancer drugs. These include both chemically unmodified small molecules and their synthetic derivatives currently used or those in clinical trials as antineoplastic agents, and an updated summary is provided. In addition, botanical dietary supplements, exemplified by mangosteen and noni constituents, are also covered as potential cancer chemotherapeutic agents. Approaches to metabolite purification, rapid dereplication, and biological evaluation including analytical hyphenated techniques, molecular networking, and advanced cellular and animal models are discussed. Further, enhanced and targeted drug delivery systems for phytochemicals, including micelles, nanoparticles and antibody drug conjugates (ADCs) are described herein.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Peter J Blanco Carcache
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
16
|
Karpov AS, Nieto-Oberhuber CM, Abrams T, Beng-Louka E, Blanco E, Chamoin S, Chene P, Dacquignies I, Daniel D, Dillon MP, Doumampouom-Metoul L, Drosos N, Fedoseev P, Furegati M, Granda B, Grotzfeld RM, Hess Clark S, Joly E, Jones D, Lacaud-Baumlin M, Lagasse-Guerro S, Lorenzana EG, Mallet W, Martyniuk P, Marzinzik AL, Mesrouze Y, Nocito S, Oei Y, Perruccio F, Piizzi G, Richard E, Rudewicz PJ, Schindler P, Velay M, Venstrom K, Wang P, Zurini M, Lafrance M. Discovery of Potent and Selective Antibody-Drug Conjugates with Eg5 Inhibitors through Linker and Payload Optimization. ACS Med Chem Lett 2019; 10:1674-1679. [PMID: 31857845 DOI: 10.1021/acsmedchemlett.9b00468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
Targeted antimitotic agents are a promising class of anticancer therapies. Herein, we describe the development of a potent and selective antimitotic Eg5 inhibitor based antibody-drug conjugate (ADC). Preliminary studies were performed using proprietary Eg5 inhibitors which were conjugated onto a HER2-targeting antibody using maleimido caproyl valine-citrulline para-amino benzocarbamate, or MC-VC-PABC cleavable linker. However, the resulting ADCs lacked antigen-specificity in vivo, probably from premature release of the payload. Second-generation ADCs were then developed, using noncleavable linkers, and the resulting conjugates (ADC-4 and ADC-10) led to in vivo efficacy in an HER-2 expressing (SK-OV-3ip) mouse xenograft model while ADC-11 led to in vivo efficacy in an anti-c-KIT (NCI-H526) mouse xenograft model in a target-dependent manner.
Collapse
Affiliation(s)
- Alexei S. Karpov
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | | | - Tinya Abrams
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Edwige Beng-Louka
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Enrique Blanco
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Sylvie Chamoin
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Patrick Chene
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Isabelle Dacquignies
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Dylan Daniel
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Michael P. Dillon
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | - Pavel Fedoseev
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Markus Furegati
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Brian Granda
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert M. Grotzfeld
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Suzanna Hess Clark
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emilie Joly
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Darryl Jones
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Marion Lacaud-Baumlin
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | | | - Edward G. Lorenzana
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - William Mallet
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Piotr Martyniuk
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Andreas L. Marzinzik
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Yannick Mesrouze
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Sandro Nocito
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Yoko Oei
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Francesca Perruccio
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Grazia Piizzi
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Etienne Richard
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Patrick J. Rudewicz
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Patrick Schindler
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Mélanie Velay
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Kristine Venstrom
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Peiyin Wang
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Mauro Zurini
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Marc Lafrance
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Bai C, Reid EE, Wilhelm A, Shizuka M, Maloney EK, Laleau R, Harvey L, Archer KE, Vitharana D, Adams S, Kovtun Y, Miller ML, Chari R, Keating TA, Yoder NC. Site-Specific Conjugation of the Indolinobenzodiazepine DGN549 to Antibodies Affords Antibody-Drug Conjugates with an Improved Therapeutic Index as Compared with Lysine Conjugation. Bioconjug Chem 2019; 31:93-103. [PMID: 31747250 DOI: 10.1021/acs.bioconjchem.9b00777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.e., the fold difference between efficacious and maximum tolerated doses). Here we present the results of a systematic preclinical comparison of ADCs embodying the DNA-alkylating linker-payload DGN549 generated with both heterogeneous lysine-directed and site-specific cysteine-directed conjugation chemistries. Importantly, the catabolites generated by each ADC are the same regardless of the conjugation format. In two different model systems evaluated, the site-specific ADC showed a therapeutic index benefit. However, the therapeutic index benefit is different in each case: both show evidence of improved tolerability, though with different magnitudes, and in one case significant efficacy improvement is also observed. These results support our contention that conjugation chemistry of ADCs is best evaluated in the context of a particular antibody, target, and linker-payload, and ideally across multiple disease models.
Collapse
Affiliation(s)
- Chen Bai
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Emily E Reid
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Alan Wilhelm
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Manami Shizuka
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Erin K Maloney
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Rassol Laleau
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Lauren Harvey
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Katie E Archer
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Dilrukshi Vitharana
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Sharlene Adams
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Yelena Kovtun
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Michael L Miller
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Ravi Chari
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Thomas A Keating
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| | - Nicholas C Yoder
- Science, Technology, and Translation , ImmunoGen, Inc. , 830 Winter Street , Waltham , Massachusetts 02451 , United States
| |
Collapse
|
18
|
Salomon PL, Reid EE, Archer KE, Harris L, Maloney EK, Wilhelm AJ, Miller ML, Chari RVJ, Keating TA, Singh R. Optimizing Lysosomal Activation of Antibody–Drug Conjugates (ADCs) by Incorporation of Novel Cleavable Dipeptide Linkers. Mol Pharm 2019; 16:4817-4825. [DOI: 10.1021/acs.molpharmaceut.9b00696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulin L. Salomon
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Emily E. Reid
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Katie E. Archer
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Luke Harris
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Erin K. Maloney
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Alan J. Wilhelm
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Michael L. Miller
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Ravi V. J. Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Thomas A. Keating
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Rajeeva Singh
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
19
|
Akla B, Broussas M, Loukili N, Robert A, Beau-Larvor C, Malissard M, Boute N, Champion T, Haeuw JF, Beck A, Perez M, Dreyfus C, Pavlyuk M, Chetaille E, Corvaia N. Efficacy of the Antibody-Drug Conjugate W0101 in Preclinical Models of IGF-1 Receptor Overexpressing Solid Tumors. Mol Cancer Ther 2019; 19:168-177. [PMID: 31594825 DOI: 10.1158/1535-7163.mct-19-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) is important in tumorigenesis, and its overexpression occurs in numerous tumor tissues. To date, therapeutic approaches based on mAbs and tyrosine kinase inhibitors targeting IGF-1R have only shown clinical benefit in specific patient populations. We report a unique IGF-1R-targeted antibody-drug conjugate (ADC), W0101, designed to deliver a highly potent cytotoxic auristatin derivative selectively to IGF-1R overexpressing tumor cells. The mAb (hz208F2-4) used to prepare the ADC was selected for its specific binding properties to IGF-1R compared with the insulin receptor, and for its internalization properties. Conjugation of a novel auristatin derivative drug linker to hz208F2-4 did not alter its binding and internalization properties. W0101 induced receptor-dependent cell cytotoxicity in vitro when applied to various cell lines overexpressing IGF-1R, but it did not affect normal cells. Efficacy studies were conducted in several mouse models expressing different levels of IGF-1R to determine the sensitivity of the tumors to W0101. W0101 induced potent tumor regression in certain mouse models. Interestingly, the potency of W0101 correlated with the expression level of IGF-1R evaluated by IHC. In an MCF-7 breast cancer model with high-level IGF-1R expression, a single injection of W0101 3 mg/kg led to strong inhibition of tumor growth. W0101 provides a potential new therapeutic option for patients overexpressing IGF-1R. A first-in-human trial of W0101 is currently ongoing to address clinical safety.
Collapse
Affiliation(s)
- Barbara Akla
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Matthieu Broussas
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Noureddine Loukili
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Alain Robert
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Charlotte Beau-Larvor
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Martine Malissard
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Nicolas Boute
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Thierry Champion
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Jean-Francois Haeuw
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France.
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Michel Perez
- Institut de Recherche Pierre Fabre, Oncology Innovation Unit, Toulouse, France
| | - Cyrille Dreyfus
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| | - Mariya Pavlyuk
- Institut de Recherche Pierre Fabre, Oncology Innovation Unit, Toulouse, France
| | - Eric Chetaille
- Institut de Recherche Pierre Fabre, Oncology Innovation Unit, Toulouse, France
| | - Nathalie Corvaia
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, Saint-Julien-en-Genevois, France
| |
Collapse
|
20
|
Mhetre AB, Sreedhar E, Dubey R, Sable GA, Lee H, Yang H, Lee K, Nam DH, Lim D. Synthesis and biological evaluation of potent benzoselenophene and heteroaromatic analogues of ( S)-1-(chloromethyl)-8-methoxy-2,3-dihydro-1 H-benzo[ e]indol-5-ol ( seco-MCBI). RSC Adv 2019; 9:29023-29036. [PMID: 35528410 PMCID: PMC9071829 DOI: 10.1039/c9ra04749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
A diverse series of compounds (18a-x) were synthesized from (S)-1-(chloromethyl)-8-methoxy-2,3-dihydro-1H-benzo[e]indol-5-ol (seco-MCBI) and benzoselenophene or heteroaromatic acids. These new compounds were evaluated for their cytotoxicity against the human gastric NCI-N87 and human ovarian SK-OV3 cancer cell lines. The incorporation of a methoxy substituent at the C-7 position of the seco-CBI unit enhances the cytotoxicity through its additional van der Waals interaction and gave a much higher potency than the corresponding seco-CBI-based analogues. Similarly, the seco-MCBI-benzoselenophene conjugates (18h-x) exhibited substitution effects on biological activity, and the N-butyramido and N-methylthiopropanamido analogues are highly potent, possessing >77- and >24-fold better activity than seco-MCBI-TMI for the SK-OV3 and NCI-N87 cell lines, respectively.
Collapse
Affiliation(s)
- Amol B Mhetre
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | | | - Rashmi Dubey
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | - Ganesh A Sable
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | - Hangeun Lee
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Kyoungmin Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Dongyeol Lim
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| |
Collapse
|
21
|
Reid EE, Archer KE, Shizuka M, McShea MA, Maloney EK, Ab O, Lanieri L, Wilhelm A, Ponte JF, Yoder NC, Chari RVJ, Miller ML. Design, synthesis and evaluation of novel, potent DNA alkylating agents and their antibody-drug conjugates (ADCs). Bioorg Med Chem Lett 2019; 29:2455-2458. [PMID: 31350125 DOI: 10.1016/j.bmcl.2019.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023]
Abstract
Antibody-drug conjugates (ADCs) incorporating potent indolinobenzodiazepine (IGN) DNA alkylators as the cytotoxic payload are currently undergoing clinical evaluation. The optimized design of these payloads consists of an unsymmetrical dimer possessing both an imine and an amine effectively eliminating DNA crosslinking and demonstrating improved tolerability in mice. Here we present an alternate approach to generating DNA alkylating ADCs by linking the IGN monomer with a biaryl system which has a high DNA binding affinity to potentially enhance tolerability. These BIA ADCs were found to be highly cytotoxic in vitro and demonstrated potent antitumor activity in vivo.
Collapse
Affiliation(s)
- Emily E Reid
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Katie E Archer
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Manami Shizuka
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Molly A McShea
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Erin K Maloney
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Olga Ab
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Leanne Lanieri
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Alan Wilhelm
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Jose F Ponte
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Nicholas C Yoder
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Ravi V J Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States
| | - Michael L Miller
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA 02451, United States.
| |
Collapse
|
22
|
Archer KE, Reid EE, Shizuka M, Woods J, Harris L, Maloney EK, Bartle LM, Ab O, Wilhelm A, Setiady Y, Ponte JF, Singh R, Keating TA, Chari RVJ, Miller ML. Synthesis of Highly Potent N-10 Amino-Linked DNA-Alkylating Indolinobenzodiazepine Antibody-Drug Conjugates (ADCs). ACS Med Chem Lett 2019; 10:1211-1215. [PMID: 31413807 DOI: 10.1021/acsmedchemlett.9b00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Indolinobenzodiazepine DNA alkylators (IGNs) are the cytotoxic payloads in antibody-drug conjugates (ADCs) currently undergoing Phase I clinical evaluation (IMGN779, IMGN632, and TAK164). These ADCs possess linkers that have been incorporated into a central substituted phenyl spacer. Here, we present an alternative strategy for the IGNs, linking through a carbamate at the readily available N-10 amine present in the monoimine containing dimer. As a result, we have designed a series of N-10 linked IGN ADCs with a wide range of in vitro potency and tolerability, which may allow us to better match an IGN with a particular target based on the potential dosing needs.
Collapse
Affiliation(s)
- Katie E. Archer
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Emily E. Reid
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Manami Shizuka
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - James Woods
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Luke Harris
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Erin K. Maloney
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Laura M. Bartle
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Olga Ab
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Alan Wilhelm
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Yulius Setiady
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Jose F. Ponte
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Rajeeva Singh
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Thomas A. Keating
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Ravi V. J. Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Michael L. Miller
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
23
|
Reid EE, Archer KE, Shizuka M, Wilhelm A, Yoder NC, Bai C, Fishkin NE, Harris L, Maloney EK, Salomon P, Hong E, Wu R, Ab O, Jin S, Lai KC, Sikka S, Chari RVJ, Miller ML. Effect of Linker Stereochemistry on the Activity of Indolinobenzodiazepine Containing Antibody-Drug Conjugates (ADCs). ACS Med Chem Lett 2019; 10:1193-1197. [PMID: 31413805 DOI: 10.1021/acsmedchemlett.9b00240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Antibody-drug conjugates (ADCs) that incorporate potent indolinobenzodiazepine DNA alkylators as the payload component are currently undergoing clinical evaluation. In one ADC design, the payload molecules are linked to the antibody through a peptidase-labile l-Ala-l-Ala linker. In order to determine the role of amino acid stereochemistry on antitumor activity and tolerability, we incorporated l- and d-alanyl groups in the dipeptide, synthesized all four diastereomers, and prepared and tested the corresponding ADCs. Results of our preclinical evaluation showed that the l-Ala-l-Ala configuration provided the ADC with the highest therapeutic index (antitumor activity vs toxicity).
Collapse
Affiliation(s)
- Emily E. Reid
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Katie E. Archer
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Manami Shizuka
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Alan Wilhelm
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Nicholas C. Yoder
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Chen Bai
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Nathan E. Fishkin
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Luke Harris
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Erin K. Maloney
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Paulin Salomon
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Erica Hong
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Rui Wu
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Olga Ab
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Shan Jin
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Katharine C. Lai
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Surina Sikka
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Ravi V. J. Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Michael L. Miller
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
24
|
Buecheler JW, Winzer M, Weber C, Gieseler H. Oxidation-Induced Destabilization of Model Antibody-Drug Conjugates. J Pharm Sci 2019; 108:1236-1245. [DOI: 10.1016/j.xphs.2018.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022]
|
25
|
Wang J, Zhang W, Salter R, Lim HK. Reductive Desulfuration as an Important Tool in Detection of Small Molecule Modifications to Payload of Antibody Drug Conjugates. Anal Chem 2019; 91:2368-2375. [DOI: 10.1021/acs.analchem.8b05134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jianyao Wang
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Heng-Keang Lim
- Department of Drug Metabolism and Pharmacokinetics, Janssen Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
26
|
Suen LM, Tekle-Smith MA, Williamson KS, Infantine JR, Reznik SK, Tanis PS, Casselman TD, Sackett DL, Leighton JL. Design and 22-step synthesis of highly potent D-ring modified and linker-equipped analogs of spongistatin 1. Nat Commun 2018; 9:4710. [PMID: 30413713 PMCID: PMC6226463 DOI: 10.1038/s41467-018-07259-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/24/2018] [Indexed: 12/03/2022] Open
Abstract
Spongistatin 1 is among the most potent anti-proliferative agents ever discovered rendering it an attractive candidate for development as a payload for antibody-drug conjugates and other targeted delivery approaches. Unfortunately, it is unavailable from natural sources and its size and complex stereostructure render chemical synthesis highly time- and resource-intensive. As a result, the design and synthesis of more acid-stable and linker functional group-equipped analogs that retain the low picomolar potency of the parent natural product requires more efficient and step-economical synthetic access. Using uniquely enabling direct complex fragment coupling crotyl- and alkallylsilylation reactions, we report a 22-step synthesis of a rationally designed D-ring modified analog of spongistatin 1 that is characterized by GI50 values in the low picomolar range, and a proof-of-concept result that the C(15) acetate may be replaced with linker functional group-bearing esters with only minimal reductions in potency.
Collapse
Affiliation(s)
- Linda M Suen
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | | | | | - Samuel K Reznik
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Paul S Tanis
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tyler D Casselman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - James L Leighton
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
27
|
Karpov AS, Abrams T, Clark S, Raikar A, D’Alessio JA, Dillon MP, Gesner TG, Jones D, Lacaud M, Mallet W, Martyniuk P, Meredith E, Mohseni M, Nieto-Oberhuber CM, Palacios D, Perruccio F, Piizzi G, Zurini M, Bialucha CU. Nicotinamide Phosphoribosyltransferase Inhibitor as a Novel Payload for Antibody-Drug Conjugates. ACS Med Chem Lett 2018; 9:838-842. [PMID: 30128077 PMCID: PMC6088352 DOI: 10.1021/acsmedchemlett.8b00254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a novel modality that allows targeted delivery of potent therapeutic agents to the desired site. Herein we report our discovery of NAMPT inhibitors as a novel nonantimitotic payload for ADCs. The resulting anti-c-Kit conjugates (ADC-3 and ADC-4) demonstrated in vivo efficacy in the c-Kit positive gastrointestinal stromal tumor GIST-T1 xenograft model in a target-dependent manner.
Collapse
Affiliation(s)
- Alexei S. Karpov
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Tinya Abrams
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suzanna Clark
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ankita Raikar
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph A. D’Alessio
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael P. Dillon
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas G. Gesner
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Darryl Jones
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Marion Lacaud
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - William Mallet
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Piotr Martyniuk
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Erik Meredith
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Morvarid Mohseni
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Daniel Palacios
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Grazia Piizzi
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Mauro Zurini
- Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Carl Uli Bialucha
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Hasan M, Leak RK, Stratford RE, Zlotos DP, Witt‐Enderby PA. Drug conjugates-an emerging approach to treat breast cancer. Pharmacol Res Perspect 2018; 6:e00417. [PMID: 29983986 PMCID: PMC6032357 DOI: 10.1002/prp2.417] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer treatment using a single drug is associated with a high failure rate due, in part, to the heterogeneity of drug response within individuals, nonspecific target action, drug toxicity, and/or development of resistance. Use of dual-drug therapies, including drug conjugates, may help overcome some of these roadblocks by more selective targeting of the cancer cell and by acting at multiple drug targets rather than one. Drug-conjugate approaches include linking drugs to antibodies (antibody-drug conjugates), radionuclides (radioimmunoconjugates), nanoparticles (nanoparticle-drug conjugates), or to other drugs (drug-drug conjugates). Although all of these conjugates might be designed as effective treatments against breast cancer, the focus of this review will be on drug-drug conjugates because of the increase in versatility of these types of drugs with respect to mode of action at the level of the cancer cell either by creating a novel pharmacophore or by increasing the potency and/or efficacy of the drugs' effects at their respective molecular targets. The development, synthesis, and pharmacological characteristics of drug-drug conjugates will be discussed in the context of breast cancer with the hope of enhancing drug efficacy and reducing toxicities to improve patient quality of life.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | - Rehana K. Leak
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | | | - Darius P. Zlotos
- Department of Pharmaceutical ChemistryThe German University in CairoNew Cairo CityCairoEgypt
| | - Paula A. Witt‐Enderby
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
- University of Pittsburgh Cancer InstituteUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
29
|
Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler H. Impact of Payload Hydrophobicity on the Stability of Antibody–Drug Conjugates. Mol Pharm 2018; 15:2656-2664. [DOI: 10.1021/acs.molpharmaceut.8b00177] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jakob W. Buecheler
- Division of Pharmaceutics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Discovery and Development Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Discovery and Development Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | - Jason Tonillo
- Discovery and Development Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | - Christian Weber
- Discovery and Development Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | | |
Collapse
|
30
|
Miller ML, Shizuka M, Wilhelm A, Salomon P, Reid EE, Lanieri L, Sikka S, Maloney EK, Harvey L, Qiu Q, Archer KE, Bai C, Vitharana D, Harris L, Singh R, Ponte JF, Yoder NC, Kovtun Y, Lai KC, Ab O, Pinkas J, Keating TA, Chari RV. A DNA-Interacting Payload Designed to Eliminate Cross-Linking Improves the Therapeutic Index of Antibody–Drug Conjugates (ADCs). Mol Cancer Ther 2018; 17:650-660. [DOI: 10.1158/1535-7163.mct-17-0940] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/15/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
31
|
Ohri R, Bhakta S, Fourie-O'Donohue A, Dela Cruz-Chuh J, Tsai SP, Cook R, Wei B, Ng C, Wong AW, Bos AB, Farahi F, Bhakta J, Pillow TH, Raab H, Vandlen R, Polakis P, Liu Y, Erickson H, Junutula JR, Kozak KR. High-Throughput Cysteine Scanning To Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers. Bioconjug Chem 2018; 29:473-485. [PMID: 29425028 DOI: 10.1021/acs.bioconjchem.7b00791] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.
Collapse
Affiliation(s)
- Rachana Ohri
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Sunil Bhakta
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | - Siao Ping Tsai
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Ryan Cook
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Athena W Wong
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Aaron B Bos
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Farzam Farahi
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jiten Bhakta
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Helga Raab
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Vandlen
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul Polakis
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Yichin Liu
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans Erickson
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jagath R Junutula
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
32
|
Smith SW, Jammalamadaka V, Borkin D, Zhu J, Degrado SJ, Lu J, Huang J, Jiang YP, Jain N, Junutula JR. Design and Synthesis of Isoquinolidinobenzodiazepine Dimers, a Novel Class of Antibody-Drug Conjugate Payload. ACS Med Chem Lett 2018; 9:56-60. [PMID: 29348812 DOI: 10.1021/acsmedchemlett.7b00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Antibody-drug conjugates (ADCs) represent an important class of emerging cancer therapeutics. Recent ADC development efforts highlighted the use of pyrrolobenzodiazepine (PBD) dimer payload for the treatment of several cancers. We identified the isoquinolidinobenzodiazepine (IQB) payload (D211), a new class of PBD dimer family of DNA damaging payloads. We have successfully synthesized all three IQB stereoisomers, experimentally showed that the purified (S,S)-D211 isomer is functionally more active than (R,R)-D221 and (S,R)-D231 isomers by >50,000-fold and ∼200-fold, respectively. We also synthesized a linker-payload (D212) that uses (S,S)-D211 payload with a cathepsin cleavable linker, a hydrophilic PEG8 spacer, and a thiol reactive maleimide. In addition, homogeneous ADCs generated using D212 linker-payload exhibited ideal physicochemical properties, and anti-CD33 ADC displayed a robust target-specific potency on AML cell lines. These results demonstrate that D212 linker-payload described here can be utilized for developing novel ADC therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Sean W. Smith
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Vasu Jammalamadaka
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Dmitry Borkin
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Jianyu Zhu
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Sylvia J. Degrado
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Jennifer Lu
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Jianqing Huang
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Ying-Ping Jiang
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| | - Nareshkumar Jain
- The Chemistry Research Solution, d/b/a Abzena, 360 George Patterson Blvd, Bristol, Pennsylvania 19007, United States
| | - Jagath R. Junutula
- Cellerant Therapeutics, 1561 Industrial
Road, San Carlos, California 94070, United States
| |
Collapse
|
33
|
Unzueta U, Serna N, Sánchez-García L, Roldán M, Sánchez-Chardi A, Mangues R, Villaverde A, Vázquez E. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks. NANOTECHNOLOGY 2017; 28:505102. [PMID: 29072576 DOI: 10.1088/1361-6528/aa963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Linghu X, Segraves NL, Abramovich I, Wong N, Müller B, Neubauer N, Fantasia S, Rieth S, Bachmann S, Jansen M, Sowell CG, Askin D, Koenig SG, Gosselin F. Highly Efficient Synthesis of a Staphylococcus aureus
Targeting Payload to Enable the First Antibody-Antibiotic Conjugate. Chemistry 2017; 24:2837-2840. [DOI: 10.1002/chem.201705392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Linghu
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Nathaniel L. Segraves
- Department of Small Molecule Analytical Chemistry and Quality Control; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Ifat Abramovich
- Department of Small Molecule Analytical Chemistry and Quality Control; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Nicholas Wong
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Barbara Müller
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Nadja Neubauer
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Serena Fantasia
- Pharma Technical Development, Process Chemistry & Catalysis; F. Hoffmann-La Roche Ltd.; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Sebastian Rieth
- Pharma Technical Development, Process Chemistry & Catalysis; F. Hoffmann-La Roche Ltd.; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Stephan Bachmann
- Pharma Technical Development, Process Chemistry & Catalysis; F. Hoffmann-La Roche Ltd.; Grenzacherstrasse 124 4070 Basel Switzerland
| | - Michael Jansen
- Pharma Technical Development, Process Chemistry & Catalysis; F. Hoffmann-La Roche Ltd.; Grenzacherstrasse 124 4070 Basel Switzerland
| | - C. Gregory Sowell
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - David Askin
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Stefan G. Koenig
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry; Genentech, Inc.; 1 DNA Way South San Francisco, CA 94080 USA
| |
Collapse
|
35
|
Cilliers C, Menezes B, Nessler I, Linderman J, Thurber GM. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival. Cancer Res 2017; 78:758-768. [PMID: 29217763 DOI: 10.1158/0008-5472.can-17-1638] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
Abstract
Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo, yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy.Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR.
Collapse
Affiliation(s)
- Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Bruna Menezes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
36
|
New insight on the structural features of the cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling. Sci Rep 2017; 7:15920. [PMID: 29162861 PMCID: PMC5698355 DOI: 10.1038/s41598-017-15674-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are emerging as a promising class of selective drug delivery systems in the battle against cancer and other diseases. The auristatins monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) appear as the cytotoxic drug in almost half of the state-of-the-art ADCs on the market or in late stage clinical trials. Here, we present the first complete NMR spectroscopic characterisation of these challenging molecules, and investigate their structural properties by a combined NMR and quantum chemical modelling approach. We find that in solution, half of the drug molecules are locked in an inactive conformation, severely decreasing their efficiency, and potentially increasing the risk of side-effects. Furthermore, we identify sites susceptible to future modification, in order to potentially improve the performance of these drugs.
Collapse
|
37
|
Placenta-specific1 (PLAC1) is a potential target for antibody-drug conjugate-based prostate cancer immunotherapy. Sci Rep 2017; 7:13373. [PMID: 29042604 PMCID: PMC5645454 DOI: 10.1038/s41598-017-13682-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Our recent findings strongly support the idea of PLAC1 being as a potential immunotherapeutic target in prostate cancer (PCa). Here, we have generated and evaluated an anti-placenta-specific1 (PLAC1)-based antibody drug conjugate (ADC) for targeted immunotherapy of PCa. Prostate cancer cells express considerable levels of PLAC1. The Anti-PLAC1 clone, 2H12C12, showed high reactivity with recombinant PLAC1 and selectivity recognized PLAC1 in prostate cancer cells but not in LS180 cells, the negative control. PLAC1 binding induced rapid internalization of the antibody within a few minutes which reached to about 50% after 15 min and almost completed within an hour. After SN38 conjugation to antibody, a drug-antibody ratio (DAR) of about 5.5 was achieved without apparent negative effect on antibody affinity to cell surface antigen. The ADC retained intrinsic antibody activity and showed enhanced and selective cytotoxicity with an IC50 of 62 nM which was about 15-fold lower compared to free drug. Anti-PLAC1-ADC induced apoptosis in human primary prostate cancer cells and prostate cell lines. No apparent cytotoxic effect was observed in in vivo animal safety experiments. Our newly developed anti-PLAC1-based ADCs might pave the way for a reliable, efficient, and novel immunotherapeutic modality for patients with PCa.
Collapse
|
38
|
Staben LR, Yu SF, Chen J, Yan G, Xu Z, Del Rosario G, Lau JT, Liu L, Guo J, Zheng B, dela Cruz-Chuh J, Lee BC, Ohri R, Cai W, Zhou H, Kozak KR, Xu K, Lewis Phillips GD, Lu J, Wai J, Polson AG, Pillow TH. Stabilizing a Tubulysin Antibody-Drug Conjugate To Enable Activity Against Multidrug-Resistant Tumors. ACS Med Chem Lett 2017; 8:1037-1041. [PMID: 29057047 DOI: 10.1021/acsmedchemlett.7b00243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
The tubulysins are promising anticancer cytotoxic agents due to the clinical validation of their mechanism of action (microtubule inhibition) and their particular activity against multidrug-resistant tumor cells. Yet their high potency and subsequent systemic toxicity make them prime candidates for targeted therapy, particularly in the form of antibody-drug conjugates (ADCs). Here we report a strategy to prepare stable and bioreversible conjugates of tubulysins to antibodies without loss of activity. A peptide trigger along with a quaternary ammonium salt linker connection to the tertiary amine of tubulysin provided ADCs that were potent in vitro. However, we observed metabolism of a critical acetate ester of the drug in vivo, resulting in diminished conjugate activity. We were able to circumvent this metabolic liability with the judicious choice of a propyl ether replacement. This modified tubulysin ADC was stable and effective against multidrug-resistant lymphoma cell lines and tumors.
Collapse
Affiliation(s)
- Leanna R. Staben
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- Wuxi Apptec
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Gang Yan
- Wuxi Apptec
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zijin Xu
- Wuxi Apptec
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Geoffrey Del Rosario
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey T. Lau
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Luna Liu
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Guo
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Bing Zheng
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Byoung-Chul Lee
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Wenwen Cai
- Wuxi Biologics
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongxiang Zhou
- Wuxi Biologics
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Katherine R. Kozak
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jiawei Lu
- Wuxi Biologics
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - John Wai
- Wuxi Apptec
, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Andrew G. Polson
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech, Inc.
, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
39
|
Vollmar BS, Wei B, Ohri R, Zhou J, He J, Yu SF, Leipold D, Cosino E, Yee S, Fourie-O'Donohue A, Li G, Phillips GL, Kozak KR, Kamath A, Xu K, Lee G, Lazar GA, Erickson HK. Attachment Site Cysteine Thiol pK a Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody-Drug Conjugates. Bioconjug Chem 2017; 28:2538-2548. [PMID: 28885827 DOI: 10.1021/acs.bioconjchem.7b00365] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.
Collapse
Affiliation(s)
- Breanna S Vollmar
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianhui Zhou
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas Leipold
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Ely Cosino
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Sharon Yee
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimee Fourie-O'Donohue
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Gail L Phillips
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Amrita Kamath
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Genee Lee
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Greg A Lazar
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| | - Hans K Erickson
- Genentech Incorporated , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
40
|
Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules 2017; 22:molecules22081281. [PMID: 28763044 PMCID: PMC6152078 DOI: 10.3390/molecules22081281] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/29/2017] [Indexed: 11/16/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of highly potent biopharmaceutical drugs generated by conjugating cytotoxic drugs with specific monoclonal antibodies through appropriate linkers. Specific antibodies used to guide potent warheads to tumor tissues can effectively reduce undesired side effects of the cytotoxic drugs. An in-depth understanding of antibodies, linkers, conjugation strategies, cytotoxic drugs, and their molecular targets has led to the successful development of several approved ADCs. These ADCs are powerful therapeutics for cancer treatment, enabling wider therapeutic windows, improved pharmacokinetic/pharmacodynamic properties, and enhanced efficacy. Since tubulin inhibitors are one of the most successful cytotoxic drugs in the ADC armamentarium, this review focuses on the progress in tubulin inhibitor-based ADCs, as well as lessons learned from the unsuccessful ADCs containing tubulin inhibitors. This review should be helpful to facilitate future development of new generations of tubulin inhibitor-based ADCs for cancer therapy.
Collapse
|
41
|
Kato A, Kuratani M, Yanagisawa T, Ohtake K, Hayashi A, Amano Y, Kimura K, Yokoyama S, Sakamoto K, Shiraishi Y. Extensive Survey of Antibody Invariant Positions for Efficient Chemical Conjugation Using Expanded Genetic Codes. Bioconjug Chem 2017; 28:2099-2108. [DOI: 10.1021/acs.bioconjchem.7b00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Mitsuo Kuratani
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tatsuo Yanagisawa
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazumasa Ohtake
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akiko Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshimi Amano
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
42
|
Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS One 2017; 12:e0178452. [PMID: 28558059 PMCID: PMC5448779 DOI: 10.1371/journal.pone.0178452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.
Collapse
|
43
|
Wang J, Xiao H, Qian ZG, Zhong JJ. Bioproduction of Antibody–Drug Conjugate Payload Precursors by Engineered Cell Factories. Trends Biotechnol 2017; 35:466-478. [DOI: 10.1016/j.tibtech.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022]
|
44
|
Pillow TH, Schutten M, Yu SF, Ohri R, Sadowsky J, Poon KA, Solis W, Zhong F, Del Rosario G, Go MAT, Lau J, Yee S, He J, Liu L, Ng C, Xu K, Leipold DD, Kamath AV, Zhang D, Masterson L, Gregson SJ, Howard PW, Fang F, Chen J, Gunzner-Toste J, Kozak KK, Spencer S, Polakis P, Polson AG, Flygare JA, Junutula JR. Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers. Mol Cancer Ther 2017; 16:871-878. [PMID: 28223423 DOI: 10.1158/1535-7163.mct-16-0641] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871-8. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Shang-Fan Yu
- Genentech, Inc., South San Francisco, California
| | - Rachana Ohri
- Genentech, Inc., South San Francisco, California
| | | | | | - Willy Solis
- Genentech, Inc., South San Francisco, California
| | - Fiona Zhong
- Genentech, Inc., South San Francisco, California
| | | | | | - Jeffrey Lau
- Genentech, Inc., South San Francisco, California
| | - Sharon Yee
- Genentech, Inc., South San Francisco, California
| | - Jintang He
- Genentech, Inc., South San Francisco, California
| | - Luna Liu
- Genentech, Inc., South San Francisco, California
| | - Carl Ng
- Genentech, Inc., South San Francisco, California
| | - Keyang Xu
- Genentech, Inc., South San Francisco, California
| | | | | | - Donglu Zhang
- Genentech, Inc., South San Francisco, California
| | - Luke Masterson
- Spirogen Ltd., QMB Innovation Centre, London, United Kingdom
| | | | - Philip W Howard
- Spirogen Ltd., QMB Innovation Centre, London, United Kingdom
| | - Fan Fang
- WuXi AppTec Co., Ltd., Shanghai, P.R. China
| | | | | | | | | | - Paul Polakis
- Genentech, Inc., South San Francisco, California
| | | | | | | |
Collapse
|
45
|
Novel linkers and connections for antibody-drug conjugates to treat cancer and infectious disease. Pharm Pat Anal 2017; 6:25-33. [PMID: 28155578 DOI: 10.4155/ppa-2016-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibody-drug conjugates (ADCs) are an exciting therapeutic, combining the extreme potency of a small molecule cytotoxic drug with the exquisite selectivity of a monoclonal antibody. Despite the promising concept and many decades of research and clinical experiments, only two ADCs are approved for human use. Among the lessons learned, have been the need for highly stable and potentially releasable linkers and the empirical nature of therapeutic index supporting the testing of many diverse cytotoxics, many requiring new linker connections for the drug's available functional groups. This article will focus on our efforts at Genentech to develop a new disulfide linker as well as our discovery of a novel quaternary ammonium salt linker connection and the application to ADCs for cancer and infectious disease.
Collapse
|
46
|
|
47
|
Su D, Ng C, Khosraviani M, Yu SF, Cosino E, Kaur S, Xu K. Custom-Designed Affinity Capture LC-MS F(ab′)2 Assay for Biotransformation Assessment of Site-Specific Antibody Drug Conjugates. Anal Chem 2016; 88:11340-11346. [DOI: 10.1021/acs.analchem.6b03410] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dian Su
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Shang-Fan Yu
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Ely Cosino
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Surinder Kaur
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|