1
|
He Z, Yang W, Yang F, Zhang J, Ma L. Innovative medicinal chemistry strategies for enhancing drug solubility. Eur J Med Chem 2024; 279:116842. [PMID: 39260319 DOI: 10.1016/j.ejmech.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Drug candidates with poor solubility have been recognized as the cause of many drug development failures, owing to the fact that low solubility is unfavorable for physicochemical, pharmacokinetic (PK) and pharmacodynamic (PD) properties. Given the imperative role of solubility during drug development, we herein summarize various strategies for solubility optimizations from a medicinal chemistry perspective, including introduction of polar group, salt formation, structural simplification, disruption of molecular planarity and symmetry, optimizations on the solvent exposed region as well as prodrug design. In addition, methods for solubility assessment and prediction are reviewed. Besides, we have deeply discussed the strategies for solubility improvement. This paper is expected to be beneficial for the development of drug-like molecules with good solubility.
Collapse
Affiliation(s)
- Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
| | - Weiguang Yang
- Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan, Zhengzhou, 450000, China
| | - Feifei Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China.
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; China Meheco Topfond Pharmaceutical Co., Zhumadian, 463000, China.
| |
Collapse
|
2
|
Velazquez Cruz M, Salinas-Arellano E, Castro Dionicio I, Jeyaraj JG, Mirtallo Ezzone NP, de Blanco EJC. Bioactive compounds isolated from the bark of Aesculus glabra Willd. PHYTOCHEMISTRY LETTERS 2024; 61:106-114. [PMID: 39479302 PMCID: PMC11521205 DOI: 10.1016/j.phytol.2024.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The Aesculus genus has several species, most notably Aesculus hippocastanum, with reported cytotoxic and venotonic effects. The angiogenic effect from A. hippocastanum is of interest given the current limitations of anti-angiogenic therapeutics. Aesculus glabra (Willdenow), known as the Ohio Buckeye Tree is a species native to North America with reported medicinal use by the Native Americans. Previous phytochemical studies have focused on the seed and leaf contents of the glabra species, with most of them reporting cytotoxic activity. In this study, we assessed preliminary anti-angiogenic activity and toxicity of isolated compounds from the bark of A. glabra utilizing a zebrafish (Danio rerio) model. Procyanidin A2 and epicatechin, two pure isolates, were tested using zebrafish and gave an anti-angiogenic response, suggesting an underlying mechanism involved in vascular development.
Collapse
Affiliation(s)
- Miriam Velazquez Cruz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
- Primary co-authors
| | - Eric Salinas-Arellano
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
- Primary co-authors
| | - Ines Castro Dionicio
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Jonathan G. Jeyaraj
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Nathan P. Mirtallo Ezzone
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
3
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
4
|
Abhinand CS, Galipon J, Mori M, Ramesh P, Prasad TSK, Raju R, Sudhakaran PR, Tomita M. Temporal phosphoproteomic analysis of VEGF-A signaling in HUVECs: an insight into early signaling events associated with angiogenesis. J Cell Commun Signal 2023; 17:1067-1079. [PMID: 36881336 PMCID: PMC10409921 DOI: 10.1007/s12079-023-00736-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is one of the primary factors promoting angiogenesis in endothelial cells. Although defects in VEGF-A signaling are linked to diverse pathophysiological conditions, the early phosphorylation-dependent signaling events pertinent to VEGF-A signaling remain poorly defined. Hence, a temporal quantitative phosphoproteomic analysis was performed in human umbilical vein endothelial cells (HUVECs) treated with VEGF-A-165 for 1, 5 and 10 min. This led to the identification and quantification of 1971 unique phosphopeptides corresponding to 961 phosphoproteins and 2771 phosphorylation sites in total. Specifically, 69, 153, and 133 phosphopeptides corresponding to 62, 125, and 110 phosphoproteins respectively, were temporally phosphorylated at 1, 5, and 10 min upon addition of VEGF-A. These phosphopeptides included 14 kinases, among others. This study also captured the phosphosignaling events directed through RAC, FAK, PI3K-AKT-MTOR, ERK, and P38 MAPK modules with reference to our previously assembled VEGF-A/VEGFR2 signaling pathway map in HUVECs. Apart from a significant enrichment of biological processes such as cytoskeleton organization and actin filament binding, our results also suggest a role of AAK1-AP2M1 in the regulation of VEGFR endocytosis. Taken together, the temporal quantitative phosphoproteomics analysis of VEGF signaling in HUVECs revealed early signaling events and we believe that this analysis will serve as a starting point for the analysis of differential signaling across VEGF members toward the full elucidation of their role in the angiogenesis processes. Workflow for the identification of early phosphorylation events induced by VEGF-A-165 in HUVEC cells.
Collapse
Affiliation(s)
- Chandran S Abhinand
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
- Department of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
5
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
6
|
Bordet A, Leitner W. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Acc Chem Res 2021; 54:2144-2157. [PMID: 33822579 PMCID: PMC8154204 DOI: 10.1021/acs.accounts.1c00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The synthesis and use of supported metal nanoparticle catalysts have a long-standing tradition in catalysis, typically associated with the field of heterogeneous catalysis. More recently, the development and understanding of catalytic systems composed of metal nanoparticles (NPs) that are synthesized from organometallic precursors on molecularly modified surfaces (MMSs) have opened a conceptually new approach to the design of multifunctional catalysts (NPs@MMS). These complex yet fascinating materials bridge molecular ("homogeneous") and material ("heterogeneous") approaches to catalysis and provide access to catalytic systems with tailor-made reactivity through judicious combinations of supports, molecular modifiers, and nanoparticle precursors. A particularly promising field of application is the controlled activation and transfer of dihydrogen, enabling highly selective hydrogenation and hydrogenolysis reactions as relevant for the conversion of biogenic feedstocks and platform chemicals as well as for novel synthetic pathways to fine chemicals and even pharmaceuticals. Consequently, the topic offers an emerging field for interdisciplinary research activities involving organometallic chemists, material scientists, synthetic organic chemists, and catalysis experts.This Account will provide a brief overview of the historical background and cover examples from the most recent developments in the field. A coherent account on the methodological and experimental basis will be given from the long-standing experience in our laboratories. MMSs are widely accessible via chemisorption and physisorption methods for the generation of stable molecular environments on solid surfaces, whereby a special emphasis is given here to ionic liquid-type molecules as modifiers (supported ionic liquid phases, SILPs) and silica as support material. Metal nanoparticles are synthesized following an organometallic approach, allowing the controlled formation of small and uniformly dispersed monometallic or multimetallic NPs in defined composition. A combination of techniques from molecular and material characterization provides a detailed insight into the structure of the resulting materials across various scales (electron microscopy, solid-state NMR, XPS, XAS, etc.).The molecular functionalities grafted on the silica surface have a pronounced influence on the formation, stabilization, and reactivity of the NPs. The complementary and synergistic fine-tuning of the metal and its molecular environment in NPs@MMSs allow in particular the control of the activation of hydrogen and its transfer to substrates. Monometallic (Ru, Rh, Pd) monofunctional NPs@MMSs possess excellent activities for the hydrogenation of alkenes, alkynes, and arenes for which a nonpolarized (homolytic) activation of H2 is predominant. The incorporation of 3d metals in noble metal NPs to give bimetallic (FeRu, CoRh, etc.) monofunctional NPs@MMSs favors a more polarized H2 activation and thus its transfer to the C═O bond, while at the same time preventing the arrangement of noble metal atoms necessary for ring hydrogenation. The incorporation of reactive functionalities, such as, for example, a -SO3H moiety on NPs@MMSs, results in bifunctional catalysts enabling the heterolytic cleavage corresponding to a formal H-/H+ transfer. Consequently, such catalysts possess excellent deoxygenation activity with strong synergistic effects arising from an intimate contact between the nanoparticles and the molecular functionality.While many more efforts are still required to explore, control, and understand the chemistry of NPs@MMS catalysts fully, the currently available examples already highlight the large potential of this approach for the rational design of multifunctional catalytic systems.
Collapse
Affiliation(s)
- Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
7
|
Kim D, Choi SW, Cho J, Been JH, Choi K, Jiang W, Han J, Oh J, Park C, Choi S, Seo S, Kim KL, Suh W, Lee SK, Kim S. Discovery of Novel Small-Molecule Antiangiogenesis Agents to Treat Diabetic Retinopathy. J Med Chem 2021; 64:5535-5550. [PMID: 33902285 DOI: 10.1021/acs.jmedchem.0c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness which is associated with excessive angiogenesis. Using the structure of wondonin marine natural products, we previously created a scaffold to develop a novel type of antiangiogenesis agent that possesses minimized cytotoxicity. To overcome its poor pharmaceutical properties, we further modified the structure. A new scaffold was derived in which the stereogenic carbon was changed to nitrogen and the 1,2,3-triazole ring was replaced by an alkyl chain. By comparing the bioactivity versus cytotoxicity, compound 31 was selected, which has improved aqueous solubility and an enhanced selectivity index. Mechanistically, 31 suppressed angiopoietin-2 (ANGPT2) expression induced by high glucose in retinal cells and exhibited in vivo antiangiogenic activity in choroidal neovascularization and oxygen-induced retinopathy mouse models. These results suggest the potential of 31 as a lead to develop antiangiogenic small-molecule drugs to treat diabetic retinopathy and as a chemical tool to elucidate new mechanisms of angiogenesis.
Collapse
Affiliation(s)
- Donghwa Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sang Won Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jihee Cho
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jae-Hui Been
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Kyoungsun Choi
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Wenzhe Jiang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jaeho Han
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jedo Oh
- Hana Pharmaceutical Co., Pangyo 13486, Korea
| | | | | | - Songyi Seo
- Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Koung Li Kim
- Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Wonhee Suh
- Department of Global Innovative Drug, Graduate School of Chung-Ang University, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Sethiya A, Sahiba N, Teli P, Soni J, Agarwal S. Current advances in the synthetic strategies of 2-arylbenzothiazole. Mol Divers 2020; 26:513-553. [PMID: 33180241 DOI: 10.1007/s11030-020-10149-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Benzothiazole is a privileged scaffold in the field of synthetic and medicinal chemistry. Its derivatives and metal complexes possess a gamut of pharmacological properties and high degree of structural diversity that has proven it vital for the investigation for novel therapeutics. The 2nd position of benzothiazole is the most active site that makes 2-arylbenzothiazole as felicitous scaffolds in pharmaceutical chemistry. The extensive significance of benzo-fused heterocyclic moieties formation has led to broad and valuable different approaches for their synthesis. This review deals with the synthetic approaches developed so far for the synthesis of 2-arylbenzothiazoles. Moreover, this article abridges the publications devoted to the synthesis of this moiety over the last 6 years. This study gives a current precis of research on the fabrication of 2-arylbenzothiazoles through different synthetic pathways and shall be helpful for researchers and scientists who are working in this field to make more potent biologically active benzothiazole-based drugs.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001, India.
| |
Collapse
|
9
|
Goclik L, Offner-Marko L, Bordet A, Leitner W. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst. Chem Commun (Camb) 2020; 56:9509-9512. [PMID: 32686801 DOI: 10.1039/d0cc03695a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective hydrodeoxygenation of hydroxyacetophenone derivatives is achieved opening a versatile pathway for the production of valuable substituted ethylphenols from readily available substrates. Bimetallic iron ruthenium nanoparticles immobilized on an imidazolium-based supported ionic liquid phase (Fe25Ru75@SILP) show high activity and stability for a broad range of substrates without acidic co-catalysts.
Collapse
Affiliation(s)
- Lisa Goclik
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lisa Offner-Marko
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany. and Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
10
|
Pauli FP, Martins JR, Paschoalin T, Ionta M, Barbosa MLC, Barreiro EJ. Novel VEGFR‐2 inhibitors with an
N
‐acylhydrazone scaffold. Arch Pharm (Weinheim) 2020; 353:e2000130. [DOI: 10.1002/ardp.202000130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Fernanda P. Pauli
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences Federal University of Rio de Janeiro, CCS Rio de Janeiro RJ Brazil
- Graduate Program in Chemistry (PGQu) Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Juliana R. Martins
- Department of Drugs and Medicines, Institute of Biomedical Sciences Federal University of Alfenas Alfenas Brazil
| | - Thaysa Paschoalin
- Department of Biophysics Federal University of São Paulo São Paulo Brazil
| | - Marisa Ionta
- Department of Drugs and Medicines, Institute of Biomedical Sciences Federal University of Alfenas Alfenas Brazil
| | - Maria Leticia C. Barbosa
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences Federal University of Rio de Janeiro, CCS Rio de Janeiro RJ Brazil
- Faculty of Pharmacy Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences Federal University of Rio de Janeiro, CCS Rio de Janeiro RJ Brazil
| |
Collapse
|
11
|
Cytotoxic Scalarane Sesterterpenes from the Sponge Hyrtios erectus. Mar Drugs 2020; 18:md18050253. [PMID: 32414015 PMCID: PMC7281328 DOI: 10.3390/md18050253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Twelve new sesterterpenes along with eight known sesterterpenes were isolated from the marine sponge Hyrtios erectus collected off the coast of Chuuk Island, the Federated State of Micronesia. Based upon a combination of spectroscopic and computational analyses, these compounds were determined to be eight glycine-bearing scalaranes (1–8), a 3-keto scalarane (9), two oxidized-furan-bearing scalaranes (10 and 11), and a salmahyrtisane (12). Several of these compounds exhibited weak antiproliferation against diverse cancer cell lines as well as moderate anti-angiogenesis activities. The antiproliferative activity of new compound 4 was found to be associated with G0/G1 arrest in the cell cycle.
Collapse
|
12
|
Choi SY, Kim HD, Park JU, Park SA, Kim JH. Cp*Co(III)-Catalyzed γ-Selective C-H Allylation/Hydroamination Cascade for the Synthesis of Dihydroisoquinolines. Org Lett 2019; 21:10038-10042. [PMID: 31794237 DOI: 10.1021/acs.orglett.9b03977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Cp*Co(III)-catalyzed γ-selective C-H allylation/hydroamination cascade toward the synthesis of 3,4-dihydroisoquinolines (DHIQs) has been successfully developed, starting from NH ketimines and allyl carbonates. Notably, highly efficient and γ-selective C-H allylations were accomplished using γ-substituted allyl reagents, thus overcoming the issues of poor α/γ selectivity and low reactivity of previous transition metal-catalyzed C-H allylations. The stereochemistry of allyl carbonates was a crucial factor, and synthesis of the DHIQs was achieved using (Z)-allyl carbonates.
Collapse
Affiliation(s)
- Suh Young Choi
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science , Gyeongsang National University , 52828 , Jinju , Korea
| | - Hyeon Dae Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science , Gyeongsang National University , 52828 , Jinju , Korea
| | - Jong-Un Park
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science , Gyeongsang National University , 52828 , Jinju , Korea
| | - Sun-A Park
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science , Gyeongsang National University , 52828 , Jinju , Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science , Gyeongsang National University , 52828 , Jinju , Korea
| |
Collapse
|
13
|
Farkhondeh T, Samarghandian S, Roshanravan B. Impact of chrysin on the molecular mechanisms underlying diabetic complications. J Cell Physiol 2019; 234:17144-17158. [DOI: 10.1002/jcp.28488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences Neyshabur Iran
- Department of Basic Medical Sciences Neyshabur University of Medical Sciences Neyshabur Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
14
|
Phenalenones from a Marine-Derived Fungus Penicillium Sp. Mar Drugs 2019; 17:md17030176. [PMID: 30889916 PMCID: PMC6470642 DOI: 10.3390/md17030176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
Six new phenalenone derivatives (1–6), along with five known compounds (7–11) of the herqueinone class, were isolated from a marine-derived fungus Penicillium sp. The absolute configurations of these compounds were assigned based on chemical modifications and their specific rotations. 4-Hydroxysclerodin (6) and an acetone adduct of a triketone (7) exhibited moderate anti-angiogenetic and anti-inflammatory activities, respectively, while ent-peniciherqueinone (1) and isoherqueinone (9) exhibited moderate abilities to induce adipogenesis without cytotoxicity.
Collapse
|
15
|
Kwon OS, Kim D, Kim H, Lee YJ, Lee HS, Sim CJ, Oh DC, Lee SK, Oh KB, Shin J. Bromopyrrole Alkaloids from the Sponge Agelas kosrae. Mar Drugs 2018; 16:md16120513. [PMID: 30563015 PMCID: PMC6316234 DOI: 10.3390/md16120513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022] Open
Abstract
Two new sceptrin derivatives (1,2) and eight structurally-related known bromopyrrole-bearing alkaloids were isolated from the tropical sponge Agelas kosrae. By a combination of spectroscopic methods, the new compounds, designated dioxysceptrin (1) and ageleste C (2), were determined to be structural analogs of each other that differ at the imidazole moiety. Dioxysceptrin was also found to exist as a mixture of α-amido epimers. The sceptrin alkaloids exhibited weak cytotoxicity against cancer cells. Compounds 1 and 2 also moderately exhibited anti-angiogenic and isocitrate lyase-inhibitory activities, respectively.
Collapse
Affiliation(s)
- Oh-Seok Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Heegyu Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea.
| | - Yeon-Ju Lee
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, P.O. Box 29, Seoul 425-600, Korea.
| | - Hyi-Seung Lee
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, P.O. Box 29, Seoul 425-600, Korea.
| | - Chung J Sim
- Department of Biological Science, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin, Yuseong, Daejeon 305-811, Korea.
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea.
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| |
Collapse
|
16
|
Bae M, Oh J, Bae ES, Oh J, Hur J, Suh YG, Lee SK, Shin J, Oh DC. WS9326H, an Antiangiogenic Pyrazolone-Bearing Peptide from an Intertidal Mudflat Actinomycete. Org Lett 2018; 20:1999-2002. [DOI: 10.1021/acs.orglett.8b00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jedo Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joonseong Hur
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy, CHA University, Gyeonggi-do 11160, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|