1
|
Supuran CT, Nocentini A, Yakubova E, Savchuk N, Kalinin S, Krasavin M. Biochemical profiling of anti-HIV prodrug Elsulfavirine (Elpida ®) and its active form VM1500A against a panel of twelve human carbonic anhydrase isoforms. J Enzyme Inhib Med Chem 2021; 36:1056-1060. [PMID: 34000969 PMCID: PMC8143618 DOI: 10.1080/14756366.2021.1927007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The non-nucleoside reverse transcriptase inhibitor VM1500A is approved for the treatment of HIV/AIDS in its N-acyl sulphonamide prodrug form elsulfavirine (Elpida®). Biochemical profiling against twelve human carbonic anhydrase (CA, EC 4.2.1.1) isoforms showed that while elsulfavirine was a weak inhibitor of all isoforms, VM1500A potently and selectively inhibited human (h) hCA VII isoform, a proven target for the therapy of neuropathic pain. The latter is a common neurologic complication of HIV infection and we hypothesise that by using Elpida® in patients may help alleviate this debilitating symptom.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| | | | - Nikolay Savchuk
- Viriom Inc, San Diego, CA, USA.,ChemDiv Inc, San Diego, CA, USA
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
2
|
Sharonova T, Paramonova P, Kalinin S, Bunev A, Gasanov RЕ, Nocentini A, Sharoyko V, Tennikova TB, Dar'in D, Supuran CT, Krasavin M. Insertion of metal carbenes into the anilinic N-H bond of unprotected aminobenzenesulfonamides delivers low nanomolar inhibitors of human carbonic anhydrase IX and XII isoforms. Eur J Med Chem 2021; 218:113352. [PMID: 33774343 DOI: 10.1016/j.ejmech.2021.113352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/25/2023]
Abstract
Herein we report the synthesis of a set of thirty-four primary sulfonamides generated via formal N-H-insertion of metal carbenes into anilinic amino group of sulfanilamide and its meta-substituted analog. Obtained compounds were tested in vitro as inhibitors of four physiologically significant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Many of the synthesized sulfonamides displayed low nanomolar Ki values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Provided the promising activity profiles of the substances towards tumor-associated hCA IX and XII isozymes, single-concentration MTT test was performed for the entire set. Disappointingly, most of the discovered hCA inhibitors did not significantly suppress the growth of cancer cells either in normoxia or CoCl2 induced hypoxic conditions. The only two compounds exerting profound antiproliferative effect turned out to be modest hCA inhibitors. Their out of the range activity in cells is likely attributive to the presence of Michael acceptor substructure which can potentially act either through the inhibition of Thioredoxin reductases (TrxRs, EC 1.8.1.9) or nonspecific covalent binding to cell proteins.
Collapse
Affiliation(s)
- Tatiana Sharonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Polina Paramonova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alexander Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Rovshan Е Gasanov
- Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita degli Studi di Firenze, Florence, 50019, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana B Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, 50019, Italy.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
3
|
Kumar A, Agarwal P, Rathi E, Kini SG. Computer-aided identification of human carbonic anhydrase isoenzyme VII inhibitors as potential antiepileptic agents. J Biomol Struct Dyn 2020; 40:4850-4865. [PMID: 33345714 DOI: 10.1080/07391102.2020.1862706] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human carbonic anhydrase (hCA) belongs to a superfamily of metalloenzymes that reversibly catalyse the hydration of carbon dioxide to give bicarbonate (HCO3-) and proton (H+). As HCO3- ions play an important role in neuronal signalling hence, hCA enzymes are an attractive target for antiepileptic drugs. Out of all the isoforms, hCA VII is predominantly expressed in the brain cortex and hippocampus region, which are the most affected area during seizure activity. Hence, we have identified some hCA VII inhibitors employing computational tools like atom-based 3D quantitative structure-activity relationship (QSAR), auto-QSAR, pharmacophore-based virtual screening, molecular docking, and molecular dynamics (MD) simulations. Atom-based 3D QSAR modelling outperformed auto-QSAR with an R2 and Q2 value of 0.9634 and 0.9646, respectively. A four-feature pharmacophore model (AADR_1) was developed and a focussed library of around 3,00,000 compounds was screened. Compounds with a phase screen score >2.40 were selected for docking studies. The activity of the selected hits was predicted employing the developed 3D QSAR model. Finally, three compounds were taken up for the MD simulation studies which also suggest that the identified hits might form a stable complex with hCA VII enzyme. A comparative docking study was also done with other hCA isoforms like I, II, IV, IX, and XII to examine the selectivity of the identified hits towards hCA VII. Based on these studies, three hits have been identified as potential hCA VII inhibitor which is drug-like molecules. Further, in vitro studies are required to develop leads from these identified hits.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Paridhi Agarwal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
5
|
From random to rational: A discovery approach to selective subnanomolar inhibitors of human carbonic anhydrase IV based on the Castagnoli-Cushman multicomponent reaction. Eur J Med Chem 2019; 182:111642. [DOI: 10.1016/j.ejmech.2019.111642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
|
6
|
Krasavin M, Shetnev A, Baykov S, Kalinin S, Nocentini A, Sharoyko V, Poli G, Tuccinardi T, Korsakov M, Tennikova TB, Supuran CT. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur J Med Chem 2019; 168:301-314. [PMID: 30826507 DOI: 10.1016/j.ejmech.2019.02.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023]
Abstract
An expanded set of pyridazine-containing benzene sulfonamides was investigated for inhibition of four human carbonic anhydrase isoforms, which revealed a pronounced inhibition trend toward hCA IX, a cancer-related, membrane-bound isoform of the enzyme. Comparison of antiproliferative effects of these compounds against cancer (PANC-1) and normal (ARPE-19) cells at 50 μM concentration narrowed the selection of compounds to the eight which displayed selective growth inhibition toward the cancer cells. More detailed investigation in concentration-dependent mode against normal (ARPE-19) and two cancer cell lines (PANC-1 and SK-MEL-2) identified two lead compounds one of which displayed a notable cytotoxicity toward pancreatic cancer cells while the other targeted the melanoma cells. These findings significantly expand the knowledge base concerning the hCA IX inhibitors whose inhibitory potency against a recombinant enzyme translates into selective anticancer activity under hypoxic conditions which are aimed to model the environment of a growing tumor.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| | - Anton Shetnev
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Sergey Baykov
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Alessio Nocentini
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Mikhail Korsakov
- The Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, 150000, Russian Federation
| | - Tatiana B Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy.
| |
Collapse
|
7
|
Georgey HH, Manhi FM, Mahmoud WR, Mohamed NA, Berrino E, Supuran CT. 1,2,4-Trisubstituted imidazolinones with dual carbonic anhydrase and p38 mitogen-activated protein kinase inhibitory activity. Bioorg Chem 2018; 82:109-116. [PMID: 30312865 DOI: 10.1016/j.bioorg.2018.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 01/03/2023]
Abstract
Various 1,2,4 trisubstituted imidazolin-5-one derivatives were synthesized and evaluated for their inhibitory activity against p38 mitogen-activated protein kinase (p38MAPK) and carbonic anhydrase (CA) enzymes aiming to explore potential dual inhibitors. Results revealed that compounds 3c, 3g, 3h, 4a, 6c and 6d were the most effective derivatives against p38αMAPK (IC50 = 0.14, 0.14, 0.056, 0.14, 0.13 and 0.14 μM, respectively) compared to sorafenib (IC50 = 1.58 μM) as standard drug. On the other hand, compound 4a revealed the best inhibitory activity against all the tested carbonic anhydrase isoforms CA I, II, IV and IX with Ki values of 95.0, 0.83, 6.90 and 12.4 nM, respectively compared to acetazolamide with Ki values 250, 12.1, 74 and 12.8 nM, respectively. Therefore, compound 4a can be considered as a potent dual p38αMAPK/CA inhibitor.
Collapse
Affiliation(s)
- Hanan H Georgey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562, Cairo, Egypt
| | - Fatma M Manhi
- National Organization for Drug Control And Research (NODCAR), Giza, Egypt
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562, Cairo, Egypt.
| | - Nehad A Mohamed
- National Organization for Drug Control And Research (NODCAR), Giza, Egypt
| | - Emanuela Berrino
- Università degli Studi di Firenze, Department NEUROFARBA, Pharmaceutical and Nutraceutical Chemistry Section, University of Florence, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Department NEUROFARBA, Pharmaceutical and Nutraceutical Chemistry Section, University of Florence, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
8
|
Osipyan A, Sapegin A, Novikov AS, Krasavin M. Rare Medium-Sized Rings Prepared via Hydrolytic Imidazoline Ring Expansion (HIRE). J Org Chem 2018; 83:9707-9717. [PMID: 30101583 DOI: 10.1021/acs.joc.8b01210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrolytic imidazoline ring expansion (HIRE) methodology was extended to readily available tetracyclic [1,4]thiazepines as well as sulfoxide and sulfone analogs thereof. The reactions resulted in the facile formation of a rare medium-sized [1,4,7]thiazecine ring system that has an emerging utility in bioactive compound design. Comparing the HIRE rates for representative compounds in the three groups of substrates allowed drawing some generalizations about the substituent effects on the course of the reaction.
Collapse
Affiliation(s)
- Angelina Osipyan
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Alexander Sapegin
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Alexander S Novikov
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University , Saint Petersburg 199034 , Russian Federation
| |
Collapse
|
9
|
Angeli A, Tanini D, Capperucci A, Supuran CT. Synthesis of Novel Selenides Bearing Benzenesulfonamide Moieties as Carbonic Anhydrase I, II, IV, VII, and IX Inhibitors. ACS Med Chem Lett 2017; 8:1213-1217. [PMID: 29259736 DOI: 10.1021/acsmedchemlett.7b00387] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
A series of novel selenides bearing benzenesulfonamide moieties was synthesized and investigated for the inhibition of five human (h) isoforms of zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), hCA I, II, IV, VII, and IX. These enzymes are involved in a variety of diseases, including glaucoma, retinitis pigmentosa, epilepsy, arthritis, and tumors. The investigated compounds showed potent inhibitory action against hCA II, VII, and IX, in the low nanomolar range, thus making them of interest for the development of isoform-selective inhibitors and as candidates for biomedical applications.
Collapse
Affiliation(s)
- Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept.,
Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Damiano Tanini
- Department of University of Florence, Department of
Chemistry “Ugo Schiff″, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- Department of University of Florence, Department of
Chemistry “Ugo Schiff″, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of University of Florence, NEUROFARBA Dept.,
Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|