1
|
Parameshwaraiah SM, Shivakumar R, Xi Z, Siddappa TP, Ravish A, Mohan A, Poonacha LK, Uppar PM, Basappa S, Dukanya D, Gaonkar SL, Kemparaju K, Lobie PE, Pandey V, Basappa B. Development of Novel Indazolyl-Acyl Hydrazones as Antioxidant and Anticancer Agents that Target VEGFR-2 in Human Breast Cancer Cells. Chem Biodivers 2024; 21:e202301950. [PMID: 38258537 DOI: 10.1002/cbdv.202301950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The increased expression of VEGFR-2 in a variety of cancer cells promotes a cascade of cellular responses that improve cell survival, growth, and proliferation. Heterocycles are common structural elements in medicinal chemistry and commercially available medications that target several biological pathways and induce cell death in cancer cells. Herein, the evaluation of indazolyl-acyl hydrazones as antioxidant and anticancer agents is reported. Compounds 4e and 4j showed inhibitory activity in free radical scavenging assays (DPPH and FRPA). The titled compounds were employed in cell viability studies using MCF-7 cells, and it was observed that compounds 4f and 4j exhibited IC50 values 15.83 μM and 5.72 μM, respectively. In silico docking revealed the favorable binding energies of -7.30 kcal/mol and -8.04 kcal/mol for these compounds towards Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), respectively. In conclusion, compounds with antioxidant activity and that target VEGFR-2 in breast cancer cells are reported.
Collapse
Affiliation(s)
- Sindhu M Parameshwaraiah
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Rashmi Shivakumar
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Zhang Xi
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Tejaswini P Siddappa
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Akshay Ravish
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Arunkumar Mohan
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Lisha K Poonacha
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Pradeep M Uppar
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, 500078, India
| | - Dukanya Dukanya
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Santhosh L Gaonkar
- Manipal Academy of Higher Education, Department of Chemistry, Manipal Institute of Technology, Manipal, 576104, India
| | - Kempaiah Kemparaju
- University of Mysore, Manasagangotri, Department of Studies in Biochemistry, Mysore, 570006, India
| | - Peter E Lobie
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
- Tsinghua University, Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Vijay Pandey
- Tsinghua University, Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Basappa Basappa
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| |
Collapse
|
2
|
Quiclet-Sire B, Zard SZ. The xanthate route to tetralones, tetralins, and naphthalenes. A brief account. Org Biomol Chem 2023; 21:910-924. [PMID: 36607600 DOI: 10.1039/d2ob02159e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present account summarises routes to tetralones, tetralines, and naphthalenes based on the chemistry of xanthates developed in the authors' laboratory. The degenerative reversible transfer of xanthates allows radical addition even to unactivated, electronically unbiased alkenes, and tolerates a broad range of functional groups, in particular common polar groups such as esters, ketones, nitriles, amides, carbamates, etc. Xanthates also allow radical ring closures onto aromatic rings. This feature, in combination with the intermolecular addition to alkenes, can be used to construct tetralones and tetralines. With the appropriate appendages, the former can be converted into napthalenes with a variety of substitution patterns. This translates into a convergent approach to a vast array of building blocks of interest to the pharmaceutical and agrochemical industries, and to material sciences.
Collapse
Affiliation(s)
- Béatrice Quiclet-Sire
- Laboratoire de Synthèse Organique UMR 7652, Ecole Polytechnique, 91128 Palaiseau, France.
| | - Samir Z Zard
- Laboratoire de Synthèse Organique UMR 7652, Ecole Polytechnique, 91128 Palaiseau, France.
| |
Collapse
|
3
|
Zheng J, Zhang W, Li L, He Y, Wei Y, Dang Y, Nie S, Guo Z. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Front Chem 2022; 10:860985. [PMID: 35494629 PMCID: PMC9046545 DOI: 10.3389/fchem.2022.860985] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Turner LD, Trinh CH, Hubball RA, Orritt KM, Lin CC, Burns JE, Knowles MA, Fishwick CWG. From Fragment to Lead: De Novo Design and Development toward a Selective FGFR2 Inhibitor. J Med Chem 2021; 65:1481-1504. [PMID: 34780700 DOI: 10.1021/acs.jmedchem.1c01163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are implicated in a range of cancers with several pan-kinase and selective-FGFR inhibitors currently being evaluated in clinical trials. Pan-FGFR inhibitors often cause toxic side effects and few examples of subtype-selective inhibitors exist. Herein, we describe a structure-guided approach toward the development of a selective FGFR2 inhibitor. De novo design was carried out on an existing fragment series to yield compounds predicted to improve potency against the FGFRs. Subsequent iterative rounds of synthesis and biological evaluation led to an inhibitor with nanomolar potency that exhibited moderate selectivity for FGFR2 over FGFR1/3. Subtle changes to the lead inhibitor resulted in a complete loss of selectivity for FGFR2. X-ray crystallographic studies revealed inhibitor-specific morphological differences in the P-loop which were posited to be fundamental to the selectivity of these compounds. Additional docking studies have predicted an FGFR2-selective H-bond which could be utilized to design more selective FGFR2 inhibitors.
Collapse
Affiliation(s)
- Lewis D Turner
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Ryan A Hubball
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Kyle M Orritt
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, U.K
| | - Chi-Chuan Lin
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Julie E Burns
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, U.K
| | - Margaret A Knowles
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, U.K
| | | |
Collapse
|
5
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
6
|
Qin J, Cheng W, Duan YT, Yang H, Yao Y. Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications. Anticancer Agents Med Chem 2021; 21:839-860. [PMID: 32819234 DOI: 10.2174/1871520620999200818160350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties. METHODS A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application. RESULTS The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials. CONCLUSION This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| |
Collapse
|
7
|
Spectroscopic, quantum chemical, molecular docking and in vitro anticancer activity studies on 5-Methoxyindole-3-carboxaldehyde. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Volynets G, Lukashov S, Borysenko I, Gryshchenko A, Starosyla S, Bdzhola V, Ruban T, Iatsyshyna A, Lukash L, Bilokin Y, Yarmoluk S. Identification of protein kinase fibroblast growth factor receptor 1 (FGFR1) inhibitors among the derivatives of 5-(5,6-dimethoxybenzimidazol-1-yl)-3-hydroxythiophene-2-carboxylic acid. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02493-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Uriarte I, Reviriego F, Calabrese C, Elguero J, Kisiel Z, Alkorta I, Cocinero EJ. Bond Length Alternation Observed Experimentally: The Case of 1H‐Indazole. Chemistry 2019; 25:10172-10178. [DOI: 10.1002/chem.201901666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Iciar Uriarte
- Departamento de Química Física, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
- Biofisika InstituteCSICUPV/EHU Apartado 644 48080 Bilbao Spain
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros (ICTP)CSIC c/Juan de la Cierva, 3 28006 Madrid Spain
| | - Camilla Calabrese
- Departamento de Química Física, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
- Biofisika InstituteCSICUPV/EHU Apartado 644 48080 Bilbao Spain
| | - José Elguero
- Instituto de Química MédicaCSIC C/Juan de la Cierva, 3 28006 Madrid Spain
| | - Zbigniew Kisiel
- Institute of PhysicsPolish Academy of Sciences Al. Lotnikow 32/46 02-668 Warszawa Poland
| | - Ibon Alkorta
- Instituto de Química MédicaCSIC C/Juan de la Cierva, 3 28006 Madrid Spain
| | - Emilio J. Cocinero
- Departamento de Química Física, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU) Apartado 644 48080 Bilbao Spain
- Biofisika InstituteCSICUPV/EHU Apartado 644 48080 Bilbao Spain
| |
Collapse
|
10
|
Zhang SG, Liang CG, Zhang WH. Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives. Molecules 2018; 23:E2783. [PMID: 30373212 PMCID: PMC6278422 DOI: 10.3390/molecules23112783] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Indazole-containing derivatives represent one of the most important heterocycles in drug molecules. Diversely substituted indazole derivatives bear a variety of functional groups and display versatile biological activities; hence, they have gained considerable attention in the field of medicinal chemistry. This review aims to summarize the recent advances in various methods for the synthesis of indazole derivatives. The current developments in the biological activities of indazole-based compounds are also presented.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao-Gen Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Dong J, Zhang Q, Wang Z, Huang G, Li S. Recent Advances in the Development of Indazole-based Anticancer Agents. ChemMedChem 2018; 13:1490-1507. [PMID: 29863292 DOI: 10.1002/cmdc.201800253] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer is one of the leading causes of human mortality globally; therefore, intensive efforts have been made to seek new active drugs with improved anticancer efficacy. Indazole-containing derivatives are endowed with a broad range of biological properties, including anti-inflammatory, antimicrobial, anti-HIV, antihypertensive, and anticancer activities. In recent years, the development of anticancer drugs has given rise to a wide range of indazole derivatives, some of which exhibit outstanding activity against various tumor types. The aim of this review is to outline recent developments concerning the anticancer activity of indazole derivatives, as well as to summarize the design strategies and structure-activity relationships of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Guang Huang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| |
Collapse
|