1
|
Lin Y, Wang J, Liu X, Hu Y, Zhang Y, Jiang F. Synthesis, biological activity evaluation and mechanism analysis of new ganglioside GM3 derivatives as potential agents for nervous functional recovery. Eur J Med Chem 2024; 266:116108. [PMID: 38218125 DOI: 10.1016/j.ejmech.2023.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neuronal regenerative ability is vital for the treatment of neurodegenerative diseases and neuronal injuries. Recent studies have revealed that Ganglioside GM3 and its derivatives may possess potential neuroprotective and neurite growth-promoting activities. Herein, six GM3 derivatives were synthesized and evaluated their potential neuroprotective effects and neurite outgrowth-promoting activities on a cellular model of Parkinson's disease and primary nerve cells. Amongst these derivatives, derivatives N-14 and 2C-12 demonstrated neuroprotective effects in the MPP + model in SH-SY5Y cells. 2C-12 combined with NGF (nerve growth factor) induced effecially neurite growth in primary nerve cells. Further action mechanism revealed that derivative 2C-12 exerts neuroprotective effects by regulating the Wnt signaling pathway, specifically involving the Wnt7b gene. Overall, this study establishes a foundation for further exploration and development of GM3 derivatives with neurotherapeutic potential.
Collapse
Affiliation(s)
- Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangwen Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yangfan Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Tantak M, Rayala R, Deng Z, Bunnell A, Wang T, Chaudhari P, Leng F, Nefzi A. Polyheterocyclic peptidomimetics: Parallel solid phase synthesis of oligo cyclic guanidines and their inhibition activity against Mycobacterium tuberculosis DNA gyrase. Bioorg Med Chem Lett 2023; 93:129439. [PMID: 37557925 PMCID: PMC10993493 DOI: 10.1016/j.bmcl.2023.129439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. We report the design and the parallel synthesis of novel linear oligocyclic guanidine peptidomimetics from predesigned reduced polyamides. A screening of these compounds identified active Mycobacterium tuberculosis DNA gyrase inhibitors which do not inhibit human DNA topoisomerase IIα and topoisomerase I.
Collapse
Affiliation(s)
- Mukund Tantak
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Ramanjaneyulu Rayala
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Zifang Deng
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ashley Bunnell
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Prakash Chaudhari
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Fenfei Leng
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Adel Nefzi
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA; Herbert Wertheim College of Medicine, FIU, 11200 SW 8th St, Miami, FL 33199, USA.
| |
Collapse
|
3
|
1,5-Disubstituted Acylated 2-Amino-4,5-dihydroimidazoles as a New Class of Retinoic Acid Receptor-Related Orphan Receptor (ROR) Inhibitors. Int J Mol Sci 2022; 23:ijms23084433. [PMID: 35457251 PMCID: PMC9029089 DOI: 10.3390/ijms23084433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
A growing body of evidence suggests a pathogenic role for pro-inflammatory T helper 17 cells (Th17) in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type I diabetes, and psoriasis-diseases for which no curative treatment is currently available. The nuclear retinoic acid receptor-related orphan receptors alpha and gamma (RORα/γ), in particular the truncated isoform RORγt that is specifically expressed in the thymus, play a critical role in the activation of a pro-inflammatory Th17 response, and RORγ inverse agonists have shown promise as negative regulators of Th17 for the treatment of autoimmune diseases. Our study underscores the screening of a large combinatorial library of 1,5-disubstituted acylated 2-amino-4,5-dihydroimidazoles using a demonstrated synthetic and screening approach and the utility of the positional scanning libraries strategy for the rapid identification of a novel class of ROR inhibitors. We identified compound 1295-273 with the highest activity against RORγ (3.3 µM IC50) in this series, and almost a two-fold selectivity towards this receptor isoform, with 5.3 and 5.8 µM IC50 against RORα and RORβ cells, respectively.
Collapse
|
4
|
Seddek A, Annamalai T, Tse-Dinh YC. Type IA Topoisomerases as Targets for Infectious Disease Treatments. Microorganisms 2021; 9:E86. [PMID: 33401386 PMCID: PMC7823277 DOI: 10.3390/microorganisms9010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
Collapse
Affiliation(s)
- Ahmed Seddek
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Cho EJ, Devkota AK, Stancu G, Edupunganti R, Debevec G, Giulianotti M, Houghten R, Powis G, Dalby KN. A Robust and Cost-Effective Luminescent-Based High-Throughput Assay for Fructose-1,6-Bisphosphate Aldolase A. SLAS DISCOVERY 2020; 25:1038-1046. [PMID: 32462959 DOI: 10.1177/2472555220926146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypoxic solid tumors induce the stabilization of hypoxia-inducible factor 1 alpha (HIF1α), which stimulates the expression of many glycolytic enzymes and hypoxia-responsive genes. A high rate of glycolysis supports the energetic and material needs for tumors to grow. Fructose-1,6-bisphosphate aldolase A (ALDOA) is an enzyme in the glycolytic pathway that promotes the expression of HIF1α. Therefore, inhibition of ALDOA activity represents a potential therapeutic approach for a range of cancers by blocking two critical cancer survival mechanisms. Here, we present a luminescence-based strategy to determine ALDOA activity. The assay platform was developed by integrating a previously established ALDOA activity assay with a commercial NAD/NADH detection kit, resulting in a significant (>12-fold) improvement in signal/background (S/B) compared with previous assay platforms. A screening campaign using a mixture-based compound library exhibited excellent statistical parameters of Z' (>0.8) and S/B (~20), confirming its robustness and readiness for high-throughput screening (HTS) application. This assay platform provides a cost-effective method for identifying ALDOA inhibitors using a large-scale HTS campaign.
Collapse
Affiliation(s)
- Eun Jeong Cho
- Targeted Therapeutic Drug Discovery and Development, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Ashwini K Devkota
- Targeted Therapeutic Drug Discovery and Development, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Gabriel Stancu
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Ramakrishna Edupunganti
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | - Richard Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | - Garth Powis
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kevin N Dalby
- Targeted Therapeutic Drug Discovery and Development, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.,Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Barros Ribeiro da Silva V, Porcionatto M, Toledo Ribas V. The Rise of Molecules Able To Regenerate the Central Nervous System. J Med Chem 2019; 63:490-511. [PMID: 31518122 DOI: 10.1021/acs.jmedchem.9b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injury to the adult central nervous system (CNS) usually leads to permanent deficits of cognitive, sensory, and/or motor functions. The failure of axonal regeneration in the damaged CNS limits functional recovery. The lack of information concerning the biological mechanism of axonal regeneration and its complexity has delayed the process of drug discovery for many years compared to other drug classes. Starting in the early 2000s, the ability of many molecules to stimulate axonal regrowth was evaluated through automated screening techniques; many hits and some new mechanisms involved in axonal regeneration were identified. In this Perspective, we discuss the rise of the CNS regenerative drugs, the main biological techniques used to test these drug candidates, some of the most important screens performed so far, and the main challenges following the identification of a drug that is able to induce axonal regeneration in vivo.
Collapse
Affiliation(s)
| | - Marimélia Porcionatto
- Universidade Federal de São Paulo , Escola Paulista de Medicina, Laboratório de Neurobiologia Molecular, Departmento de Bioquímica , Rua Pedro de Toledo, 669 - third floor, 04039-032 São Paulo , São Paolo , Brazil
| | - Vinicius Toledo Ribas
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neurobiologia Av. Antônio Carlos, 6627, room O3-245 , - Campus Pampulha, 31270-901 , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
7
|
Linsley JW, Reisine T, Finkbeiner S. Cell death assays for neurodegenerative disease drug discovery. Expert Opin Drug Discov 2019; 14:901-913. [PMID: 31179783 DOI: 10.1080/17460441.2019.1623784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Neurodegenerative diseases affect millions of people worldwide. Neurodegeneration is gradual over time, characterized by neuronal death that causes deterioration of cognitive or motor functions, ultimately leading to the patient's death. Currently, there are no treatments that effectively slow the progression of any neurodegenerative disease, but improved microscopy assays and models for neurodegeneration could lead the way to the discovery of disease-modifying therapeutics. Areas covered: Herein, the authors describe cell-based assays used to discover drugs with the potential to slow neurodegeneration, and their associated disease models. They focus on microscopy technologies that can be adapted to a high-throughput screening format that both detect cell death and monitor early signs of neurodegeneration and functional changes to identify drugs that the block early stages of neurodegeneration. Expert opinion: Many different phenotypes have been used in screens for the development of therapeutics towards neurodegenerative disease. The context of each phenotype in relation to neurodegeneration must be established to identify therapeutics likely to successfully target and treat disease. The use of improved models of neurodegeneration, statistical analyses, computational models, and improved markers of neuronal death will help in this pursuit and lead to better screening methods to identify therapeutic compounds against neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy W Linsley
- a Gladstone Center for Systems and Therapeutics , San Francisco , CA , USA
| | - Terry Reisine
- b Independent scientific consultant , Santa Cruz , CA , USA
| | - Steven Finkbeiner
- a Gladstone Center for Systems and Therapeutics , San Francisco , CA , USA.,c Neuroscience Graduate Program, University of California , San Francisco , CA , USA.,d Biomedical Sciences and Neuroscience Graduate Program, University of California , San Francisco , CA , USA.,e Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes , San Francisco , CA , USA.,f Department of Neurology, University of California , San Francisco , CA , USA.,g Department of Physiology, University of California , San Francisco , CA , USA
| |
Collapse
|
8
|
Identification of Bis-Cyclic Guanidines as Antiplasmodial Compounds from Positional Scanning Mixture-Based Libraries. Molecules 2019; 24:molecules24061100. [PMID: 30897744 PMCID: PMC6471430 DOI: 10.3390/molecules24061100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 01/23/2023] Open
Abstract
The screening of more than 30 million compounds derived from 81 small molecule libraries built on 81 distinct scaffolds identified pyrrolidine bis-cyclic guanidine library (TPI-1955) to be one of the most active and selective antiplasmodial libraries. The screening of the positional scanning library TPI-1955 arranged on four sets of sublibraries (26 + 26 + 26 + 40), totaling 120 samples for testing provided information about the most important groups of each variable position in the TPI-1955 library containing 738,192 unique compounds. The parallel synthesis of the individual compounds derived from the deconvolution of the positional scanning library led to the identification of active selective antiplasmodial pyrrolidine bis-cyclic guanidines.
Collapse
|