1
|
Deepthi A, Leena SS, Krishnan D. Update on thiopyran-fused heterocycle synthesis (2013-2024). Org Biomol Chem 2024; 22:5676-5717. [PMID: 38912843 DOI: 10.1039/d4ob00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Thiopyrans and their fused derivatives have significant synthetic relevance owing to their biological importance and occurrence in natural products. The current article provides an overview of synthetic strategies employed for the construction of thiopyran-fused heterocycles. In particular, this article discusses synthetic methods for the fusion of thiopyran with heterocycles such as indole, quinoline, pyrimidine, pyridine, thiophene, chromene, oxazole, pyrazole, pyran and furan and covers the literature from 2013 to 2024. The most common precursors for thiopyrano[2,3-b]indoles, thiopyranoquinolines and thiopyranothiazoles are indoline-2-thione, 2-mercaptoquinoline-3-carbaldehyde and thiazolidinone, respectively, and various reactions involving these are described in detail here. Asymmetric syntheses of thiopyranoindoles achieved using chiral catalysts based on thiourea, proline and metal complexes are also included. The biological activity associated with some compounds is also discussed.
Collapse
Affiliation(s)
- Ani Deepthi
- Department of Chemistry, University of Kerala, Kariavattom, Trivandrum - 695581, Kerala, India.
| | | | - Devika Krishnan
- Department of Chemistry, University of Kerala, Kariavattom, Trivandrum - 695581, Kerala, India.
| |
Collapse
|
2
|
Robello M, Salerno S, Barresi E, Orlandi P, Vaglini F, Banchi M, Simorini F, Baglini E, Poggetti V, Taliani S, Da Settimo F, Bocci G. New antiproliferative agents derived from tricyclic 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine scaffold: Synthesis and pharmacological effects. Arch Pharm (Weinheim) 2022; 355:e2200295. [PMID: 35904260 DOI: 10.1002/ardp.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/07/2022]
Abstract
A series of novel 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazine (BIT) derivatives were designed and synthesized. In vitro antiproliferative activity was detected toward two human colorectal adenocarcinoma cell lines (CaCo-2 and HT-29) and one human dermal microvascular endothelial cell line (HMVEC-d). The most active compounds, namely 2-4 and 8, were further investigated to clarify the mechanism behind their biological activity. Through immunofluorescence assay, we identified the target of these molecules to be the microtubule cytoskeleton with subsequent formation of dense microtubule accumulation, particularly at the periphery of the cancer cells, as observed in paclitaxel-treated cells. Overall, these results highlight BIT derivatives as robust and feasible candidates deserving to be further developed in the search for novel potent antiproliferative microtubule-targeting agents.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, Bethesda, Maryland, USA
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Paola Orlandi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Vaglini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marta Banchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Emma Baglini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy
| | - Guido Bocci
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Barreca M, Ingarra AM, Raimondi MV, Spanò V, De Franco M, Menilli L, Gandin V, Miolo G, Barraja P, Montalbano A. Insight on pyrimido[5,4-g]indolizine and pyrimido[4,5-c]pyrrolo[1,2-a]azepine systems as promising photosensitizers on malignant cells. Eur J Med Chem 2022; 237:114399. [DOI: 10.1016/j.ejmech.2022.114399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
|