1
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
2
|
Rohilla S, Goyal G, Berwal P, Mathur N. A Review on Indole-triazole Molecular Hybrids as a Leading Edge in Drug Discovery: Current Landscape and Future Perspectives. Curr Top Med Chem 2024; 24:1557-1588. [PMID: 38766822 DOI: 10.2174/0115680266307132240509065351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Molecular hybridization is a rational design strategy used to create new ligands or prototypes by identifying and combining specific pharmacophoric subunits from the molecular structures of two or more known bioactive derivatives. Molecular hybridization is a valuable technique in drug discovery, enabling the modulation of unwanted side effects and the creation of potential dual-acting drugs that combine the effects of multiple therapeutic agents. Indole-triazole conjugates have emerged as promising candidates for new drug development. The indole and triazole moieties can be linked through various synthetic strategies, such as click chemistry or other coupling reactions, to generate a library of diverse compounds for biological screening. The achievable structural diversity with indole-triazole conjugates offers avenues to optimize their pharmacokinetic and pharmacodynamic attributes, amplifying their therapeutic efficacy. Researchers have extensively tailored both indole and triazole frameworks with diverse modifications to comprehend their impact on the drug's pharmacokinetic and pharmacodynamic characteristics. The current review article endeavours to explore and discuss various research strategies to design indoletriazole hybrids and elucidate their significance in a variety of pathological conditions. The insights provided herein are anticipated to be beneficial for the researchers and will likely encourage further exploration in this field.
Collapse
Affiliation(s)
- Suman Rohilla
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Garima Goyal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Paras Berwal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Nancy Mathur
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| |
Collapse
|
3
|
Xue Y, Wu C, Li H, Wang C. Acetic Acid-Catalyzed (3 + 2) Cyclization of 2-Aroyl-3-aryl-1,1-dicyanocyclopropanes with Arylhydrazines: To trans-4-Dicyanomethyl-1,3,5-triaryl-4,5-dihydropyrazoles. J Org Chem 2023; 88:15478-15485. [PMID: 37824753 DOI: 10.1021/acs.joc.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Acetic acid-catalyzed (3 + 2) cyclization reaction of substituted 2-aroyl-3-aryl-1,1-dicyanocyclopropanes with arylhydrazines was investigated for the efficient synthesis of 4-dicyanomethyl-1,3,5-triaryl-4,5-dihydropyrazoles in good yields, in which 4,5-double substituents are predominantly trans selective. This approach included the consecutive condensation, ring opening, and double nucleophilic cyclization reaction.
Collapse
Affiliation(s)
- Yuhang Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
4
|
Nain S, Mathur G, Anthwal T, Sharma S, Paliwal S. Synthesis, Characterization, and Antibacterial Activity of New Isatin Derivatives. Pharm Chem J 2023; 57:196-203. [PMID: 37313436 PMCID: PMC10169110 DOI: 10.1007/s11094-023-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 06/15/2023]
Abstract
1H-indol-2,3-dione (isatin) class of biologically active compounds have analgesic, anti-microbial, anti-inflammatory, anti-tubercular, anti-proliferative properties, and is also useful for the treatment of SARS-CoV. Schiff bases containing isatin moiety are known to have broad spectrum of biological activities like anti-viral, anti-tubercular, anti-fungal, and anti-bacterial. In this work, several Schiff base derivatives have been synthesized using two methods (synthetic and microwave) by reacting isatin with o-phenylenediamine. The synthesized compounds were structurally characterized and their in-vivo antimicrobial activity was tested against Gram-negative and Gram-positive bacteria using the inhibition zone method. Several newly synthesized isatin derivatives were found effective as antimicrobial agents and showed good potency (compounds 3c, 3d, 6a, 6b, 6d). Compound 3c displayed higher antimicrobial activity than standard drug (Amoxicillin) against Staphylococcus aureus at higher concentration (16 μg/mL) and against Escherichia coli at lower concentration (1 μg/mL).
Collapse
Affiliation(s)
- Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Garima Mathur
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Tulika Anthwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| |
Collapse
|
5
|
Adhikari HS, Garai A, Yadav PN. Synthesis, characterization, and anticancer activity of chitosan functionalized isatin based thiosemicarbazones, and their copper(II) complexes. Carbohydr Res 2023; 526:108796. [PMID: 36944301 DOI: 10.1016/j.carres.2023.108796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The one-pot synthetic method of condensation of isatin and 5-chloroisatin on to amino group at C2 position of the pyranose ring chitosan in chitosan thiosemicarbazide was employed to get these chitosan thiosemicarbazones (TSCs). The partial incorporation of thiosemicarbazone moiety in chitosan was shown by FT-IR and 13C NMR spectroscopic studies, powder X ray diffraction, and CHNS microanalysis. The NOS tridentate coordination behavior of TSCs with copper(II) chloride to give the square planar complexes was established by FT-IR spectroscopic data, magnetic susceptibility measurement, and EPR spectral analysis. The thermal stability of these biomaterial chitosan derivatives till the commencement of chain disruption at 200C was shown by thermal studies. As revealed by colorimetric MTT assays, the in vitro anticancer activity enhancement accorded with the functionalization of chitosan as isatin based chitosan TSCs, and NOS tridentate coordination of TSCs plus a monodentate coordination of chloride ion with copper(II) ion. Only a marginal activity difference of these compounds was observed against the tumorigenic MDCK and MCF-7 cancer cell lines, irrespective of unit molecular weight (Mw) and degree of deacetylation (DDA) of ring chitosan. The 5-chloroisatin chitosan TSCs showed better activity than isatin chitosan TSCs against both the cell lines.
Collapse
Affiliation(s)
- Hari Sharan Adhikari
- Institute of Engineering, Pashchimanchal Campus, Department of Applied Sciences, Tribhuvan University, Pokhara, Nepal
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
6
|
Skaraitė I, Maccioni E, Petrikaitė V. Anticancer Activity of Sunitinib Analogues in Human Pancreatic Cancer Cell Cultures under Normoxia and Hypoxia. Int J Mol Sci 2023; 24:ijms24065422. [PMID: 36982496 PMCID: PMC10049421 DOI: 10.3390/ijms24065422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic cancer remains one of the deadliest cancer types. It is usually characterized by high resistance to chemotherapy. However, cancer-targeted drugs, such as sunitinib, recently have shown beneficial effects in pancreatic in vitro and in vivo models. Therefore, we chose to study a series of sunitinib derivatives developed by us, that were proven to be promising compounds for cancer treatment. The aim of our research was to evaluate the anticancer activity of sunitinib derivatives in human pancreatic cancer cell lines MIA PaCa-2 and PANC-1 under normoxia and hypoxia. The effect on cell viability was determined by the MTT assay. The compound effect on cell colony formation and growth was established by clonogenic assay and the activity on cell migration was estimated using a ‘wound healing’ assay. Six out of 17 tested compounds at 1 µM after 72 h of incubation reduced cell viability by 90% and were more active than sunitinib. Compounds for more detailed experiments were chosen based on their activity and selectivity towards cancer cells compared to fibroblasts. The most promising compound EMAC4001 was 24 and 35 times more active than sunitinib against MIA PaCa-2 cells, and 36 to 47 times more active against the PANC-1 cell line in normoxia and hypoxia. It also inhibited MIA PaCa-2 and PANC-1 cell colony formation. Four tested compounds inhibited MIA PaCa-2 and PANC-1 cell migration under hypoxia, but none was more active than sunitinib. In conclusion, sunitinib derivatives possess anticancer activity in human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cell lines, and they are promising for further research.
Collapse
Affiliation(s)
- Ieva Skaraitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-68629383
| |
Collapse
|
7
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
8
|
Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals (Basel) 2022; 15:ph15091071. [PMID: 36145292 PMCID: PMC9500727 DOI: 10.3390/ph15091071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011–2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.
Collapse
|
9
|
Šermukšnytė A, Kantminienė K, Jonuškienė I, Tumosienė I, Petrikaitė V. The Effect of 1,2,4-Triazole-3-thiol Derivatives Bearing Hydrazone Moiety on Cancer Cell Migration and Growth of Melanoma, Breast, and Pancreatic Cancer Spheroids. Pharmaceuticals (Basel) 2022; 15:ph15081026. [PMID: 36015174 PMCID: PMC9416745 DOI: 10.3390/ph15081026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
4-Phenyl-3-[2-(phenylamino)ethyl]-1H-1,2,4-triazole-5(4H)-thione was used as a starting compound for the synthesis of the corresponding 1,2,4-triazol-3-ylthioacetohydrazide, which reacts with isatins and various aldehydes bearing aromatic and heterocyclic moieties provided target hydrazones. Their cytotoxicity was tested by the MTT assay against human melanoma IGR39, human triple-negative breast cancer (MDA-MB-231), and pancreatic carcinoma (Panc-1) cell lines. The selectivity of compounds towards cancer cells was also studied. In general, the synthesized compounds were more cytotoxic against the melanoma cell line. N′-(2-oxoindolin-3-ylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide, N′-((1H-pyrrol-2-yl)methylene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide and N′-(2-hydroxy-5-nitrobenzylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide were identified as the most active among all synthesized compounds in 3D cell cultures. N′-(4-(dimethylamino)benzylidene)-2-((4-phenyl-5-(2-(phenylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)acetohydrazide inhibited all cancer cell migration, was characterized as relatively more selective towards cancer cells, and could be further tested as an antimetastatic candidate.
Collapse
Affiliation(s)
- Aida Šermukšnytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
- Correspondence: (K.K.); (V.P.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, 50162 Kaunas, Lithuania
- Correspondence: (K.K.); (V.P.)
| |
Collapse
|
10
|
Yakan H, Çakmak Ş, Buruk O, Veyisoğlu A, Muğlu H, Türköz Karakullukçu N. New 5-methylisatin including thiocarbohydrazones: preparation, structure elucidation and antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Ahmed MF, Khalifa AS, Eed EM. Discovery of New Quinazoline-Based Anticancer Agents as VEGFR-2 Inhibitors and Apoptosis Inducers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
14
|
Arshad M, Ahmed K, Bashir M, Kosar N, Kanwal M, Ahmed M, Khan HU, Khan S, Rauf A, Waseem A, Mahmood T. Synthesis, structural properties and potent bioactivities supported by molecular docking and DFT studies of new hydrazones derived from 5-chloroisatin and 2-thiophenecarboxaldehyde. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Li L, Liu T, Zhang X, Hou X, Dong H, Li X, Ren W, Wang Y. Catalyst-free and atom-economical 1,3-dipolar cycloaddition of C,N-cyclic azomethine imines: Facile synthesis of isoquinoline-fused spirocycles. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Tumosienė I, Jonuškienė I, Kantminienė K, Mickevičius V, Petrikaitė V. Novel N-Substituted Amino Acid Hydrazone-Isatin Derivatives: Synthesis, Antioxidant Activity, and Anticancer Activity in 2D and 3D Models In Vitro. Int J Mol Sci 2021; 22:ijms22157799. [PMID: 34360565 PMCID: PMC8346030 DOI: 10.3390/ijms22157799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
A series of novel mono and bishydrazones each bearing a 2-oxindole moiety along with substituted phenylaminopropanamide, pyrrolidin-2-one, benzimidazole, diphenylmethane, or diphenylamine fragments were synthesized, and their anticancer activities were tested by MTT assay against human melanoma A375 and colon adenocarcinoma HT-29 cell lines. In general, the synthesized compounds were more cytotoxic against HT-29 than A375. 3-((4-Methoxyphenyl)(3-oxo-3-(2-(2-oxoindolin-3-ylidene)hydrazinyl)propyl)amino)-N′-(2-oxoindolin-3-ylidene)propanehydrazide and (N′,N‴)-1,1′-(methylenebis(4,1-phenylene))bis(5-oxo-N′-(2-oxoindolin-3-ylidene)pyrrolidine-3-carbohydrazide) were identified as the most active compounds against HT-29 in 2D and 3D cell cultures. The same compounds showed the highest antioxidant activity among the synthesized compounds screened by ferric reducing antioxidant power assay (FRAP). Their antioxidant activity is on par with that of a well-known antioxidant ascorbic acid.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence:
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (I.J.); (V.M.)
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
17
|
Meleddu R, Deplano S, Maccioni E, Ortuso F, Cottiglia F, Secci D, Onali A, Sanna E, Angeli A, Angius R, Alcaro S, Supuran CT, Distinto S. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J Enzyme Inhib Med Chem 2021; 36:685-692. [PMID: 33602041 PMCID: PMC7899656 DOI: 10.1080/14756366.2021.1887171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A small library of coumarin and their psoralen analogues EMAC10157a-b-d-g and EMAC10160a-b-d-g has been designed and synthesised to investigate the effect of structural modifications on their inhibition ability and selectivity profile towards carbonic anhydrase isoforms I, II, IX, and XII. None of the new compounds exhibited activity towards hCA I and II isozymes. Conversely, both coumarin and psoralen derivatives were active against tumour associated isoforms IX and XII in the low micromolar or nanomolar range of concentration. These data further corroborate our previous findings on analogous derivatives, confirming that both coumarins and psoralens are interesting scaffolds for the design of isozyme selective hCA inhibitors.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Rossella Angius
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Pula, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
18
|
Tangadanchu VKR, Sui YF, Zhou CH. Isatin-derived azoles as new potential antimicrobial agents: Design, synthesis and biological evaluation. Bioorg Med Chem Lett 2021; 41:128030. [PMID: 33839249 DOI: 10.1016/j.bmcl.2021.128030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Novel antibiotics are forced to be developed on account of multidrug-resistant bacteria with serious threats to human health. This work developed isatin-derived azoles as new potential antimicrobial agents. Bioactive assay revealed that isatin hybridized 1,2,4-triazole 7a exhibited excellent inhibitory activity against E. coli ATCC 25,922 with an MIC value of 1 µg/mL, which was 8-fold more potent than reference drug norfloxacin. The active molecule 7a possessed the ability to kill some bacteria and fungi as well as displayed low propensity to induce resistance towards E. coli ATCC25922. Preliminary mechanism investigation indicated that hybrid 7a might block deoxyribonucleic acid (DNA) replication by intercalating with DNA and possibly interacting with DNA polymerase III, thus exerting its antimicrobial potency.
Collapse
Affiliation(s)
- Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
19
|
Lotlikar OA, Dandekar SN, Ramana MMV, Rathod SV. Synthesis, Molecular Docking, In Vitro Anti-Bacterial, and Anti-Cancer Activities of Some Novel Oxo-Spiro Chromene Schiff’s Bases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Santoso M, Fadlan A, Fahmi MRG, Rahmayanti A. Synthesis and in vitro cytotoxicity evaluation of isatin-pyrrole derivatives against HepG2 cell line. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This paper reports the synthesis and in vitro cytotoxicity evaluation of isatin-pyrrole derivatives 5–8, obtained from the appropriate isatins with pyrrole, with good yields and purity. The product structures were confirmed through spectroscopy methods. Furthermore, the MTT assay on the human liver cancer HepG2 cell lines revealed moderate activity in all compounds, which was highest in sample 6 (IC50 0.47 µM). The anticancer activity was affiliated with the presence of a nitro group at C-5 and N-methyl of the isatin scaffold.
Collapse
Affiliation(s)
- Mardi Santoso
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Kampus ITS Sukolilo , Surabaya , 60111 , Indonesia
| | - Arif Fadlan
- Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Kampus ITS Sukolilo , Surabaya , 60111 , Indonesia
| | - Muhammad Riza Ghulam Fahmi
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung , Villa Puncak Tidar N-01 , Malang , 65151 , Indonesia
| | - Ardhana Rahmayanti
- Department of Environmental Engineering, Faculty of Engineering, Universitas Nahdlatul 10 Ulama Sidoarjo , Jl. Monginsidi Dalam KAV DPR, Sidoklumpuk , Sidoarjo , 61218 , Indonesia
| |
Collapse
|
21
|
Chauhan G, Pathak DP, Ali F, Bhutani R, Kapoor G, Khasimbi S. Advances in Synthesis, Derivatization and Bioactivity of Isatin: A Review. Curr Org Synth 2021; 18:37-74. [DOI: 10.2174/1570179417666200924150907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
Background:
Isatin (IST) is a crucial pharmacologically active compound, chemically known as indole-
1H-2,3-dione. Development of different IST based analogues acquired significant awareness because of its
pronounced therapeutic importance such as analgesic, anticancer, anti-inflammatory, antitubercular, antimicrobial,
antifungal, antiviral (effective against SARS coronavirus 3C protease) and many other activities, and represents
an important class of heterocyclic compounds that can be used as a precursor for the synthesis of many useful
drugs.
Objective:
Previously, many articles were reported on IST synthesis and its different pharmacological activities
but herein, we mentioned 59 different synthesis schemes of several IST derivatives/hybrids derived from the substitution
of the nitrogen, aromatic ring, the second and third position of IST along with most potent molecule
among each of synthesized libraries with their structural activity relationship (SAR). Using these standardized
approaches, several biologically important compounds were developed like sunitinib, nintedanib, indirubin, etc
and several studies have been carried out nowadays to develop newer compounds having fewer side effects and
also overcome the problem of resistance.
Conclusion:
This report critically reviews the different strategies for the designs and synthesis of several IST
based compounds having different biological activities with SAR, which can favour further investigation and
modification for the development of new and more potent entities.
Collapse
Affiliation(s)
- Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Science and Research (DIPSAR),Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Science and Research (DIPSAR),Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, India
| | - Faraat Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Science and Research (DIPSAR),Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, India
| | - Rubina Bhutani
- School of Medical and Allied Sciences, G D Goenka University, Gurugram, Sohna, Haryana, India
| | - Garima Kapoor
- KIET Group of Institutions, Ghaziabad- Meerut Highway, NH-58, Ghaziabad, Uttar Pradesh, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Science and Research (DIPSAR),Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, India
| |
Collapse
|
22
|
Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur J Med Chem 2021; 213:113161. [PMID: 33540229 DOI: 10.1016/j.ejmech.2021.113161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/13/2020] [Accepted: 01/03/2021] [Indexed: 01/09/2023]
Abstract
A series of 4-thiazolinone derivatives (D1-D58) were designed and synthesized. All of the derivatives were evaluated in vitro for neuraminidase (NA) inhibitory activities against influenza virus A (H1N1), and the inhibitory activities of the five most potent compounds were further evaluated on NA from two different influenza viral subtypes (H3N2 and B), and then their in vitro anti-viral activities were evaluated using the cytopathic effect (CPE) reduction assay. The results showed that the majority of the target compounds exhibited moderate to good NA inhibitory activity. Compound D18 presented the most potent inhibitory activity with IC50 values of 13.06 μM against influenza H1N1 subtype. Among the selected compounds, D18 and D41 turned out to be the most potent inhibitors against influenza virus H3N2 subtype (IC50 = 15.00 μM and IC50 = 14.97 μM, respectively). D25 was the most potent compound against influenza B subtype (IC50 = 16.09 μM). In addition, D41 showed low toxicity and greater potency than reference compounds Oseltamivir and Amantadine against N1-H275Y variant in cellular assays. The structure-activity relationship (SAR) analysis showed that introducing 4-CO2H, 4-OH, 3-OCH3-4-OH substituted benzyl methylene can greatly improve the activity of 4-thiazolinones. Further SAR analysis indicated that 4-thiazolinone and ferulic acid fragments are necessary fragments of target compounds for inhibiting NA. Molecular docking was performed to study the interaction between compound D41 and the active site of NA. This study may providing important information for new drug development for anti-influenza virus including mutant influenza virus.
Collapse
|
23
|
Tumosienė I, Kantminienė K, Klevinskas A, Petrikaitė V, Jonuškienė I, Mickevičius V. Antioxidant and Anticancer Activity of Novel Derivatives of 3-[(4-Methoxyphenyl)amino]propane-hydrazide. Molecules 2020; 25:molecules25132980. [PMID: 32610506 PMCID: PMC7412228 DOI: 10.3390/molecules25132980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Series of novel 3-[(4-methoxyphenyl)amino]propanehydrazide derivatives bearing semicarbazide, thiosemicarbazide, thiadiazole, triazolone, triazolethione, thiophenyltriazole, furan, thiophene, naphthalene, pyrrole, isoindoline-1,3-dione, oxindole, etc. moieties were synthesized and their molecular structures were confirmed by IR, 1H-, 13C-NMR spectroscopy and mass spectrometry data. The antioxidant activity of the synthesized compounds was screened by DPPH radical scavenging method. The antioxidant activity of N-(1,3-dioxoisoindolin-2-yl)-3-((4-methoxyphenyl)amino)propanamide and 3-((4-methoxyphenyl)amino)-N’-(1-(naphthalen-1-yl)-ethylidene)propanehydrazide has been tested to be ca. 1.4 times higher than that of a well-known antioxidant ascorbic acid. Anticancer activity was tested by MTT assay against human glioblastoma U-87 and triple-negative breast cancer MDA-MB-231 cell lines. In general, the tested compounds were more cytotoxic against U-87 than MDA-MB-231 cell line. 1-(4-Fluorophenyl)-2-((5-(2-((4-methoxyphenyl)amino)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)ethanone has been identified as the most active compound against the glioblastoma U-87 cell line.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-37-300178
| | - Arnas Klevinskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| |
Collapse
|
24
|
Chen L, He J. DABCO-Catalyzed Michael/Alkylation Cascade Reactions Involving α-Substituted Ammonium Ylides for the Construction of Spirocyclopropyl Oxindoles: Access to the Powerful Chemical Leads against HIV-1. J Org Chem 2020; 85:5203-5219. [DOI: 10.1021/acs.joc.9b03164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lin Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Jin He
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
25
|
Ding Z, Zhou M, Zeng C. Recent advances in isatin hybrids as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e1900367. [PMID: 31960987 DOI: 10.1002/ardp.201900367] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/06/2022]
Abstract
The isatin framework is a useful template for the development of novel anticancer agents. This is exemplified by the fact that several isatin-based anticancer agents, such as semaxanib, sunitinib, nintedanib, and hesperadin, are already in use or under clinical trials for the treatment of diverse kinds of cancers. Isatin-based hybrids could be obtained by incorporating other anticancer pharmacophores into the isatin skeleton and they have the potential to overcome drug resistance with reduced side effects. Thus, isatin-based hybrids may provide attractive scaffolds for the development of novel anticancer agents. This review covers the recent advances of isatin-based hybrids with anticancer activity, covering articles published between 2001 and 2019. The anticancer activities of these molecules and the structure-activity relationships are also discussed. The purpose of this review article is to set up the direction for the design and development of isatin-based hybrids with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| | - Minfeng Zhou
- Department of General Practice, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Cheng Zeng
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| |
Collapse
|
26
|
Distinto S, Meleddu R, Ortuso F, Cottiglia F, Deplano S, Sequeira L, Melis C, Fois B, Angeli A, Capasso C, Angius R, Alcaro S, Supuran CT, Maccioni E. Exploring new structural features of the 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzenesulphonamide scaffold for the inhibition of human carbonic anhydrases. J Enzyme Inhib Med Chem 2019; 34:1526-1533. [PMID: 31431095 PMCID: PMC6713091 DOI: 10.1080/14756366.2019.1654470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A library of 4-[(3-methyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulphonamides (EMAC8002a–m) was designed and synthesised to evaluate the effect of substituents in the positions 3 and 4 of the dihydrothiazole ring on the inhibitory potency and selectivity toward human carbonic anhydrase isoforms I, II, IX, and XII. Most of the new compounds preferentially inhibit the isoforms II and XII. Both electronic and steric features on the aryl substituent in the position 4 of the dihydrothiazole ring concur to determine the overall biological activity of these new derivatives.
Collapse
Affiliation(s)
- Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro , Catanzaro , Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Claudia Melis
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | | | | | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro , Catanzaro , Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari , Cagliari , Italy
| |
Collapse
|