1
|
Fougiaxis V, Barcherini V, Petrovic MM, Sierocki P, Warenghem S, Leroux F, Bou Karroum N, Petit-Cancelier F, Rodeschini V, Roche D, Deprez B, Deprez-Poulain R. First fragment-based screening identifies new chemotypes inhibiting ERAP1-metalloprotease. Eur J Med Chem 2024; 280:116926. [PMID: 39369482 DOI: 10.1016/j.ejmech.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) by small-molecules is being eagerly investigated for the treatment of various autoimmune diseases and in the field of immuno-oncology after its active involvement in antigen presentation and processing. Currently, ERAP1 inhibitors are at different stages of clinical development, which highlights its significance as a promising drug target. In the present work, we describe the first-ever successful identification of several ERAP1 inhibitors derived from a fragment-based screening approach. We applied an enzymatic activity assay to a large library of ∼3000 fragment entries in order to retrieve 32 hits. After a multi-faceted selection process, we prioritized 3 chemotypes for SAR optimization and strategic modifications provided 2 series (2-thienylacetic acid and rhodanine scaffolds) with improved analogues at the low micromolar range of ERAP1 inhibition. We report also evidence of selectivity against homologous aminopeptidase IRAP, combined with complementary in silico docking studies to predict the binding mode and site of inhibition. Our compounds can be the starting point for future fragment growing and rational drug development, incorporating new chemical modalities.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Valentina Barcherini
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Milena M Petrovic
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Pierre Sierocki
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Sandrine Warenghem
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Nour Bou Karroum
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | | | - Vincent Rodeschini
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Didier Roche
- Edelris, 60 avenue Rockefeller, Bioparc, Bioserra 1 Building, 69008, Lyon, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France; European Genomic Institute for Diabetes, EGID, University of Lille, F-59000, France.
| |
Collapse
|
2
|
Georgaki G, Mpakali A, Trakada M, Papakyriakou A, Stratikos E. Polymorphic positions 349 and 725 of the autoimmunity-protective allotype 10 of ER aminopeptidase 1 are key in determining its unique enzymatic properties. Front Immunol 2024; 15:1415964. [PMID: 39493758 PMCID: PMC11527673 DOI: 10.3389/fimmu.2024.1415964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction ER aminopeptidase 1 (ERAP1) is a polymorphic intracellular aminopeptidase with key roles in antigen presentation and adaptive immune responses. ERAP1 allotype 10 is highly protective toward developing some forms of autoimmunity and displays unusual functional properties, including very low activity versus some substrates. Methods To understand the molecular mechanisms that underlie the biology of allotype 10, we studied its enzymatic and biophysical properties focusing on its unique polymorphisms V349M and Q725R. Results Compared to ancestral allotype 1, allotype 10 is much less effective in trimming small substrates but presents allosteric kinetics that ameliorate activity differences at high substrate concentrations. Furthermore, it is inhibited by a transition-state analogue via a non-competitive mechanism and is much less responsive to an allosteric small-molecule modulator. It also presents opposite enthalpy, entropy, and heat capacity of activation compared to allotype 1, and its catalytic rate is highly dependent on viscosity. Polymorphisms V349M and Q725R significantly contribute to the lower enzymatic activity of allotype 10 for small substrates, especially at high substrate concentrations, influence the cooperation between the regulatory and active sites, and regulate viscosity dependence, likely by limiting product release. Conclusions Overall, our results suggest that allotype 10 is not just an inactive variant of ERAP1 but rather carries distinct enzymatic properties that largely stem from changes at positions 349 and 725. These changes affect kinetic and thermodynamic parameters that likely control rate-limiting steps in the catalytic cycle, resulting in an enzyme optimized for sparing small substrates and contributing to the homeostasis of antigenic epitopes in the ER.
Collapse
Affiliation(s)
- Galateia Georgaki
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Myrto Trakada
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| |
Collapse
|
3
|
Fougiaxis V, He B, Khan T, Vatinel R, Koutroumpa NM, Afantitis A, Lesire L, Sierocki P, Deprez B, Deprez-Poulain R. ERAP Inhibitors in Autoimmunity and Immuno-Oncology: Medicinal Chemistry Insights. J Med Chem 2024; 67:11597-11621. [PMID: 39011823 DOI: 10.1021/acs.jmedchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ben He
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Tuhina Khan
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rodolphe Vatinel
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | | | | | - Laetitia Lesire
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Pierre Sierocki
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Benoit Deprez
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Li J, Ni Y, Wang J, Zhu Y, Wang A, Zhu X, Sun X, Wang S, Li D, Zhou H. Precisely modulating the chromatin tracker via substituent engineering: reporting pathological oxidative stress during mitosis. Chem Sci 2024; 15:3949-3956. [PMID: 38487223 PMCID: PMC10935666 DOI: 10.1039/d3sc06342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 03/17/2024] Open
Abstract
An in-depth understanding of cancer-cell mitosis presents unprecedented advantages for solving metastasis and proliferation of tumors, which has aroused great interest in visualizing the behavior via a luminescence tool. We developed a fluorescent molecule CBTZ-yne based on substituent engineering to acquire befitting lipophilicity and electrophilicity for anchoring lipid droplets and the nucleus, in which the low polarity environment and nucleic acids triggered a "weak-strong" fluorescence and "short-long" fluorescence-lifetime response. Meaningfully, CBTZ-yne visualized chromatin condensation, alignment, pull-push, and separation as well as lipid droplet dynamics, for the first time, precisely unveiling the asynchronous cellular mitosis processes affected by photo-generation reactive oxygen species according to the subtle change of fluorescence-lifetime. Our work suggested a new guideline for tracking the issue of the proliferation of malignant tumors in photodynamic therapy.
Collapse
Affiliation(s)
- Jinsong Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Aidong Wang
- Key Laboratory of Drug Design, Huangshan University Huangshan 245021 P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Dandan Li
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
5
|
Pande S, Guo HC. Structure-guided discovery of aminopeptidase ERAP1 variants capable of processing antigens with novel PC anchor specificities. Immunology 2024; 171:131-145. [PMID: 37858978 PMCID: PMC10841542 DOI: 10.1111/imm.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.
Collapse
Affiliation(s)
- Suchita Pande
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Present Address: Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
6
|
Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Shedding Light on the Role of ERAP1 in Axial Spondyloarthritis. Cureus 2023; 15:e48806. [PMID: 38024089 PMCID: PMC10645460 DOI: 10.7759/cureus.48806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Spondyloarthritis (SpA) is a multifactorial chronic inflammatory disease affecting the axial skeleton (axSpA) and/or peripheral joints (p-SpA) and entheses. The disease's pathogenesis depends on genetic, immunological, mechanical, and environmental factors. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex (MHC) class I molecules. Genome-wide association studies (GWAS) have identified different single nucleotide polymorphisms (SNPs) in ERAP1 that are associated with several autoimmune diseases, including axSpA. Therefore, a deeper understanding of the ERAP1 role in axSpA could make it a potential therapeutic target for this disease and offer greater insight into its impact on the immune system. Here, we review the biological functions and structure of ERAP1, discuss ERAP1 polymorphisms and their association with axSpA, highlight the interaction between ERAP1 and human leukocyte antigen (HLA)-B27, and review the association between ERAP1 SNPs and axSpA clinical parameters.
Collapse
Affiliation(s)
- Mohamed A Saad
- Rheumatology and Rehabilitation, Physical Medicine and Rehabilitation (PMR) Hospital, Kuwait, KWT
| | - Amal B Abdul-Sattar
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ibrahim T Abdelal
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ahmed Baraka
- Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, EGY
| |
Collapse
|
7
|
Kohn EM, Konovalov K, Gomez CA, Hoover GN, Yik AKH, Huang X, Martell JD. Terminal Alkyne-Modified DNA Aptamers with Enhanced Protein Binding Affinities. ACS Chem Biol 2023; 18:1976-1984. [PMID: 37531184 DOI: 10.1021/acschembio.3c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleic acid-based receptors, known as aptamers, are relatively fast to discover and manufacture but lack the diverse functional groups of protein receptors (e.g., antibodies). The binding properties of DNA aptamers can be enhanced by attaching abiotic functional groups; for example, aromatic groups such as naphthalene slow dissociation from proteins. Although the terminal alkyne is a π-electron-rich functional group that has been used in small molecule drugs to enhance binding to proteins through noncovalent interactions, it remains unexplored for enhancing DNA aptamer binding affinity. Here, we demonstrate the utility of the terminal alkyne for improving the binding of DNA to proteins. We prepared a library of 256 terminal-alkyne-bearing variants of HD22, a DNA aptamer that binds the protein thrombin with nanomolar affinity. After a one-step thrombin-binding selection, a high-affinity aptamer containing two alkynes was discovered, exhibiting 3.2-fold tighter thrombin binding than the corresponding unmodified sequence. The tighter binding was attributable to a slower rate of dissociation from thrombin (5.2-fold slower than HD22). Molecular dynamics simulations with enhanced sampling by Replica Exchange with Solute Tempering (REST2) suggest that the π-electron-rich alkyne interacts with an asparagine side chain N-H group on thrombin, forming a noncovalent interaction that stabilizes the aptamer-protein interface. Overall, this work represents the first case of terminal alkynes enhancing the binding properties of an aptamer and underscores the utility of the terminal alkyne as an atom economical π-electron-rich functional group to enhance binding affinity with minimal steric perturbation.
Collapse
Affiliation(s)
- Eric M Kohn
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kirill Konovalov
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christian A Gomez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gillian N Hoover
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew Kai-Hei Yik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Georgiadis D, Skoulikas N, Papakyriakou A, Stratikos E. Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacol Transl Sci 2022; 5:1228-1253. [PMID: 36524013 PMCID: PMC9745897 DOI: 10.1021/acsptsci.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Nikolaos Skoulikas
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| | - Efstratios Stratikos
- Department
of Chemistry, National and Kapodistrian
University of Athens, GR-15784 Athens, Greece
- National
Centre for Scientific Research “Demokritos”, Agia Paraskevi GR-15341 Athens, Greece
| |
Collapse
|
9
|
Liu S, Lu J, Wu J, Feng D, Su X, Cao H. Structural and biochemical insights into the association between ERAP1 polymorphism and autoimmune diseases. Biochem Biophys Res Commun 2022; 632:189-194. [DOI: 10.1016/j.bbrc.2022.09.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
10
|
Vourloumis D, Mavridis I, Athanasoulis A, Temponeras I, Koumantou D, Giastas P, Mpakali A, Magrioti V, Leib J, van Endert P, Stratikos E, Papakyriakou A. Discovery of Selective Nanomolar Inhibitors for Insulin-Regulated Aminopeptidase Based on α-Hydroxy-β-amino Acid Derivatives of Bestatin. J Med Chem 2022; 65:10098-10117. [PMID: 35833347 DOI: 10.1021/acs.jmedchem.2c00904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxytocinase subfamily of M1 zinc aminopeptidases comprises emerging drug targets, including the ER-resident aminopeptidases 1 and 2 (ERAP1 and ERAP2) and insulin-regulated aminopeptidase (IRAP); however, reports on clinically relevant inhibitors are limited. Here we report a new synthetic approach of high diastereo- and regioselectivity for functionalization of the α-hydroxy-β-amino acid scaffold of bestatin. Stereochemistry and mechanism of inhibition were investigated by a high-resolution X-ray crystal structure of ERAP1 in complex with a micromolar inhibitor. By exploring the P1 side-chain functionalities, we achieve significant potency and selectivity, and we report a cell-active, low-nanomolar inhibitor of IRAP with >120-fold selectivity over homologous enzymes. X-ray crystallographic analysis of IRAP in complex with this inhibitor suggest that interactions with the GAMEN loop is an unappreciated key determinant for potency and selectivity. Overall, our results suggest that α-hydroxy-β-amino acid derivatives may constitute useful chemical tools and drug leads for this group of aminopeptidases.
Collapse
Affiliation(s)
- Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Alexandros Athanasoulis
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Pharmacy, University of Patras, 26504 Patra, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| | - Petros Giastas
- Department of Biotechnology, Agricultural University of Athens, GR-11855 Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Victoria Magrioti
- Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Jacqueline Leib
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France.,Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece.,Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Athens, Greece
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Ag. Paraskevi, GR-15341 Athens, Greece
| |
Collapse
|
11
|
Arya R, Maben Z, Rane D, Ali A, Stern LJ. Phenylsulfamoyl Benzoic Acid Inhibitor of ERAP2 with a Novel Mode of Inhibition. ACS Chem Biol 2022; 17:1756-1768. [PMID: 35767698 DOI: 10.1021/acschembio.2c00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ERAP1 and ERAP2 are endoplasmic reticulum zinc-binding aminopeptidases that play crucial roles in processing peptides for loading onto class I major histocompatibility complex proteins. These enzymes are therapeutic targets in cancer and autoimmune disorders. The discovery of inhibitors specific to ERAP1 or ERAP2 has been challenging due to the similarity in their active site residues and domain architectures. Here, we identify 4-methoxy-3-{[2-piperidin-1-yl-4-(trifluoromethyl) phenyl] sulfamoyl} benzoic acid (compound 61) as a novel inhibitor of ERAP2 and determine the crystal structure of ERAP2 bound to compound 61. Compound 61 binds near the catalytic center of ERAP2, at a distinct site from previously known peptidomimetic inhibitors, and inhibits by an uncompetitive mechanism. Surprisingly, for ERAP1, compound 61 was found to activate model substrate hydrolysis, similarly to the previously characterized 5-trifluoromethyl regioisomer of compound 61, known as compound 3. We characterized the specificity determinants of ERAP1 and ERAP2 that control the binding of compounds 3 and 61. At the active site of ERAP1, Lys380 in the S1' pocket is a key determinant for the binding of both compounds 3 and 61. At the allosteric site, ERAP1 binds either compound, leading to the activation of model substrate hydrolysis. Although ERAP2 substrate hydrolysis is not activated by either compound, the mutation of His904 to alanine reveals a cryptic allosteric site that allows for the activation by compound 3. Thus, we have identified selectivity determinants in the active and allosteric sites of ERAP2 that govern the binding of two similar compounds, which potentially could be exploited to develop more potent and specific inhibitors.
Collapse
Affiliation(s)
- Richa Arya
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Digamber Rane
- Kansas University Specialized Chemistry Center, Lawrence, Kansas 66047, United States
| | - Akbar Ali
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States.,Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, United States
| |
Collapse
|
12
|
Papakyriakou A, Mpakali A, Stratikos E. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Front Immunol 2022; 13:863529. [PMID: 35514997 PMCID: PMC9065437 DOI: 10.3389/fimmu.2022.863529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) play important roles in the generation of antigenic peptides presented by Major Histocompatibility Class I (MHCI) molecules and indirectly regulate adaptive immune responses. Although the discrete function of these enzymes has been extensively characterized, recent reports have suggested that they can also form heterodimers with functional consequences. However, lack of structural characterization of a putative ERAP1/ERAP2 dimer has limited our understanding of its biological role and significance. To address this, we employed computational molecular dynamics calculations to explore the topology of interactions between these two, based on experimentally determined homo-dimerization interfaces observed in crystal structures of ERAP2 or homologous enzymes. Our analysis of 8 possible dimerization models, suggested that the most likely ERAP1/ERAP2 heterodimerization topology involves the exon 10 loop, a non-conserved loop previously implicated in interactions between ERAP1 and the disulfide-bond shuffling chaperone ERp44. This dimerization topology allows access to the active site of both enzymes and is consistent with a previously reported construct in which ERAP1 and ERAP2 were linked by Fos/Jun zipper tags. The proposed model constitutes a tentative structural template to help understand the physiological role and significance of ERAP1/ERAP2 molecular interactions.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anastasia Mpakali
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Efstratios Stratikos
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Mpakali A, Georgiadis D, Stratikos E, Giastas P. Inhibitor-Dependent Usage of the S1' Specificity Pocket of ER Aminopeptidase 2. ACS Med Chem Lett 2022; 13:218-224. [PMID: 35178178 PMCID: PMC8842112 DOI: 10.1021/acsmedchemlett.1c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is an intracellular enzyme involved in the processing of antigenic peptides intended for presentation by major histocompatibility complex class I (MHCI) molecules. Because of its role in regulating immune responses, ERAP2 is an emerging pharmacological target. Phosphinic pseudopeptides are potent transition-state analogue inhibitors of ERAP2. Previous structure-activity studies have revealed a complex but ambiguous relationship between the occupation of putative specificity pockets and the inhibitor efficacy. To address these problems, we solved crystal structures of ERAP2 in complex with two phosphinic pseudotripeptide inhibitors. Both compounds are found in the catalytic site in a canonical orientation for transition-state analogues and utilize the S1 and S2' pockets in a similar fashion. Strikingly, their P1' side chains exhibit different orientations and make interactions with distinct shallow pockets near the ERAP2 active site. These structures suggest that S1' pocket usage in ERAP2 may be inhibitor-dependent and constitute useful starting templates for the further optimization of this class of compounds.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,
| | - Dimitris Georgiadis
- Laboratory
of Organic Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Efstratios Stratikos
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,Laboratory
of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771 Greece
| | - Petros Giastas
- Department
of Neurobiology, Hellenic Pasteur Institute, Athens 11521, Greece,Department
of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece,
| |
Collapse
|
14
|
Maben Z, Arya R, Georgiadis D, Stratikos E, Stern LJ. Conformational dynamics linked to domain closure and substrate binding explain the ERAP1 allosteric regulation mechanism. Nat Commun 2021; 12:5302. [PMID: 34489420 PMCID: PMC8421391 DOI: 10.1038/s41467-021-25564-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/10/2021] [Indexed: 11/27/2022] Open
Abstract
The endoplasmic-reticulum aminopeptidase ERAP1 processes antigenic peptides for loading on MHC-I proteins and recognition by CD8 T cells as they survey the body for infection and malignancy. Crystal structures have revealed ERAP1 in either open or closed conformations, but whether these occur in solution and are involved in catalysis is not clear. Here, we assess ERAP1 conformational states in solution in the presence of substrates, allosteric activators, and inhibitors by small-angle X-ray scattering. We also characterize changes in protein conformation by X-ray crystallography, and we localize alternate C-terminal binding sites by chemical crosslinking. Structural and enzymatic data suggest that the structural reconfigurations of ERAP1 active site are physically linked to domain closure and are promoted by binding of long peptide substrates. These results clarify steps required for ERAP1 catalysis, demonstrate the importance of conformational dynamics within the catalytic cycle, and provide a mechanism for the observed allosteric regulation and Lys/Arg528 polymorphism disease association.
Collapse
Affiliation(s)
- Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Richa Arya
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Mavridis G, Mpakali A, Zoidakis J, Makridakis M, Vlahou A, Kaloumenou E, Ziotopoulou A, Georgiadis D, Papakyriakou A, Stratikos E. The ERAP1 active site cannot productively access the N-terminus of antigenic peptide precursors stably bound onto MHC class I. Sci Rep 2021; 11:16475. [PMID: 34389743 PMCID: PMC8363620 DOI: 10.1038/s41598-021-95786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022] Open
Abstract
Processing of N-terminally elongated antigenic peptide precursors by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key step in antigen presentation and the adaptive immune response. Although ERAP1 can efficiently process long peptides in solution, it has been proposed that it can also process peptides bound onto Major Histocompatibility Complex I molecules (MHCI). In a previous study, we suggested that the occasionally observed “ontο MHCI” trimming by ERAP1 is likely due to fast peptide dissociation followed by solution trimming, rather than direct action of ERAP1 onto the MHCI complex. However, other groups have proposed that ERAP1 can trim peptides covalently bound onto MHCI, which would preclude peptide dissociation. To explore this interaction, we constructed disulfide-linked MHCI-peptide complexes using HLA-B*08 and a 12mer kinetically labile peptide, or a 16mer carrying a phosphinic transition-state analogue N-terminus with high-affinity for ERAP1. Kinetic and biochemical analyses suggested that while both peptides could access the ERAP1 active site when free in solution, they were unable to do so when tethered in the MHCI binding groove. Our results suggest that MHCI binding protects, rather than promotes, antigenic peptide precursor trimming by ERAP1 and thus solution trimming is the more likely model of antigenic peptide processing.
Collapse
Affiliation(s)
- George Mavridis
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece
| | - Anastasia Mpakali
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece
| | - Jerome Zoidakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece
| | - Athanasios Papakyriakou
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, National Centre for Scientific Research Demokritos, 15341, Agia Paraskevi, Greece. .,Biochemistry Laboratory, National and Kapodistrian University of Athens, 15784, Panepistimiopolis Zografou, Greece.
| |
Collapse
|
16
|
Sui L, Guo HC. ERAP1 binds peptide C-termini of different sequences and/or lengths by a common recognition mechanism. Immunobiology 2021; 226:152112. [PMID: 34247019 DOI: 10.1016/j.imbio.2021.152112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in controlling the immunopeptidomes available for presentation by MHC (major histocompatibility complex) molecules, thus influences immunodominance and cell-mediated immunity. It carries out this critical function by a unique molecular ruler mechanism that trims antigenic precursors in a peptide-length and sequence dependent manner. Acting as a molecular ruler, ERAP1 is capable of concurrently binding antigen peptide N- and C-termini by its N-terminal catalytic and C-terminal regulatory domains, respectively. As such ERAP1 can not only monitor substrate's lengths, but also exhibit a degree of sequence specificity at substrates' N- and C-termini. On the other hand, it also allows certain sequence and length flexibility in the middle part of peptide substrates that is critical for shaping MHC restricted immunopeptidomes. Here we report structural and biochemical studies to understand the molecular details on how ERAP1 can accommodate side chains of different anchoring residues at the substrate's C-terminus. We also examine how ERAP1 can accommodate antigen peptide precursors with length flexibility. Based on two newly determined complex structures, we find that ERAP1 binds the C-termini of peptides similarly even with different substrate sequences and/or lengths, by utilizing the same hydrophobic specificity pocket to accommodate peptides with either a Phe or Leu as the C-terminal anchor residue. In addition, SPR (surface plasmon resonance) binding analyses in solution further confirm the biological significance of these peptide-ERAP1 interactions. Similar to the binding mode of MHC-I molecules, ERAP1 accommodates for antigenic peptide length difference by allowing the peptide middle part to kink or bulge at the middle of its substrate binding cleft. This explains how SNP coded variants located at the middle of ERAP1 substrate binding cleft would influence the antigen pool and an individual's susceptibility to diseases.
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
17
|
Discovery of Selective Inhibitor Leads by Targeting an Allosteric Site in Insulin-Regulated Aminopeptidase. Pharmaceuticals (Basel) 2021; 14:ph14060584. [PMID: 34207179 PMCID: PMC8233869 DOI: 10.3390/ph14060584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin-Regulated aminopeptidase (IRAP) is a zinc-dependent aminopeptidase with several important biological functions and is an emerging pharmaceutical target for cognitive enhancement and immune system regulation. Aiming to discover lead-like IRAP inhibitors with enhanced selectivity versus homologous enzymes, we targeted an allosteric site at the C-terminal domain pocket of IRAP. We compiled a library of 2.5 million commercially available compounds from the ZINC database, and performed molecular docking at the target pocket of IRAP and the corresponding pocket of the homologous endoplasmic reticulum aminopeptidase 1 (ERAP1). Of the top compounds that showed high selectivity, 305 were further analyzed by molecular dynamics simulations and free energy calculations, leading to the selection of 33 compounds for in vitro evaluation. Two orthogonal functional assays were employed: one using a small fluorogenic substrate and one following the degradation of oxytocin, a natural peptidic substrate of IRAP. In vitro evaluation suggested that several of the compounds tested can inhibit IRAP, but the inhibition profile was dependent on substrate size, consistent with the allosteric nature of the targeted site. Overall, our results describe several novel leads as IRAP inhibitors and suggest that the C-terminal domain pocket of IRAP is a promising target for developing highly selective IRAP inhibitors.
Collapse
|
18
|
Wilding B, Pasqua AE, E A Chessum N, Pierrat OA, Hahner T, Tomlin K, Shehu E, Burke R, Richards GM, Whitton B, Arwert EN, Thapaliya A, Salimraj R, van Montfort R, Skawinska A, Hayes A, Raynaud F, Chopra R, Jones K, Newton G, Cheeseman MD. Investigating the phosphinic acid tripeptide mimetic DG013A as a tool compound inhibitor of the M1-aminopeptidase ERAP1. Bioorg Med Chem Lett 2021; 42:128050. [PMID: 33887439 PMCID: PMC8188423 DOI: 10.1016/j.bmcl.2021.128050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
ERAP1 is a zinc-dependent M1-aminopeptidase that trims lipophilic amino acids from the N-terminus of peptides. Owing to its importance in the processing of antigens and regulation of the adaptive immune response, dysregulation of the highly polymorphic ERAP1 has been implicated in autoimmune disease and cancer. To test this hypothesis and establish the role of ERAP1 in these disease areas, high affinity, cell permeable and selective chemical probes are essential. DG013A 1, is a phosphinic acid tripeptide mimetic inhibitor with reported low nanomolar affinity for ERAP1. However, this chemotype is a privileged structure for binding to various metal-dependent peptidases and contains a highly charged phosphinic acid moiety, so it was unclear whether it would display the high selectivity and passive permeability required for a chemical probe. Therefore, we designed a new stereoselective route to synthesize a library of DG013A 1 analogues to determine the suitability of this compound as a cellular chemical probe to validate ERAP1 as a drug discovery target.
Collapse
Affiliation(s)
- Birgit Wilding
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - A Elisa Pasqua
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Nicola E A Chessum
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Olivier A Pierrat
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Tamas Hahner
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kathy Tomlin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Erald Shehu
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - G Meirion Richards
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Bradleigh Whitton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Esther N Arwert
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Arjun Thapaliya
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK; Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ramya Salimraj
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK; Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rob van Montfort
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK; Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Agi Skawinska
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Rajesh Chopra
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Gary Newton
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Matthew D Cheeseman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
19
|
Hutchinson JP, Temponeras I, Kuiper J, Cortes A, Korczynska J, Kitchen S, Stratikos E. Common allotypes of ER aminopeptidase 1 have substrate-dependent and highly variable enzymatic properties. J Biol Chem 2021; 296:100443. [PMID: 33617882 PMCID: PMC8024916 DOI: 10.1016/j.jbc.2021.100443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Polymorphic variation of immune system proteins can drive variability of individual immune responses. Endoplasmic reticulum aminopeptidase 1 (ERAP1) generates antigenic peptides for presentation by major histocompatibility complex class I molecules. Coding SNPs in ERAP1 have been associated with predisposition to inflammatory rheumatic disease and shown to affect functional properties of the enzyme, but the interplay between combinations of these SNPs as they exist in allotypes has not been thoroughly explored. We used phased genotype data to estimate ERAP1 allotype frequency in 2504 individuals across five major human populations, generated highly pure recombinant enzymes corresponding to the ten most common ERAP1 allotypes, and systematically characterized their in vitro enzymatic properties. We find that ERAP1 allotypes possess a wide range of enzymatic activities, up to 60-fold, whose ranking is substrate dependent. Strikingly, allotype 10, previously associated with Behçet’s disease, is consistently a low-activity outlier, suggesting that a significant percentage of individuals carry a subactive ERAP1 gene. Enzymatic analysis revealed that ERAP1 allotypes can differ in both catalytic efficiency and substrate affinity, differences that can change intermediate accumulation in multistep trimming reactions. Alterations in efficacy of an allosteric inhibitor that targets the regulatory site suggest that allotypic variation influences the communication between the regulatory and the active site. Our work defines the wide landscape of ERAP1 activity in human populations and demonstrates how common allotypes can induce substrate-dependent variability in antigen processing, thus contributing, in synergy with major histocompatibility complex haplotypes, to immune response variability and predisposition to chronic inflammatory conditions.
Collapse
Affiliation(s)
| | - Ioannis Temponeras
- Protein Chemistry Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Jonas Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Adrian Cortes
- Human Genetics, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Justyna Korczynska
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Semra Kitchen
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Efstratios Stratikos
- Protein Chemistry Laboratory, National Centre for Scientific Research "Demokritos", Athens, Greece; Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece.
| |
Collapse
|
20
|
Hallberg M, Larhed M. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Front Pharmacol 2020; 11:590855. [PMID: 33178027 PMCID: PMC7593869 DOI: 10.3389/fphar.2020.590855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.
Collapse
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
22
|
Georgiadis D, Ziotopoulou A, Kaloumenou E, Lelis A, Papasava A. The Discovery of Insulin-Regulated Aminopeptidase (IRAP) Inhibitors: A Literature Review. Front Pharmacol 2020; 11:585838. [PMID: 33071797 PMCID: PMC7538644 DOI: 10.3389/fphar.2020.585838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-Regulated Aminopeptidase (IRAP, EC 3.4.11.3) is a multi-tasking member of the M1 family of zinc aminopeptidases. Among its diverse biological functions, IRAP is a regulator of oxytocin levels during late stages of pregnancy, it affects cellular glucose uptake by trafficking of the glucose transporter type 4 and it mediates antigen cross-presentation by dendritic cells. Accumulating evidence show that pharmacological inhibition of IRAP may hold promise as a valid approach for the treatment of several pathological states such as memory disorders, neurodegenerative diseases, etc. Aiming to the investigation of physiological roles of IRAP and therapeutic potential of its regulation, intense research efforts have been dedicated to the discovery of small-molecule inhibitors. Moreover, reliable structure-activity relationships have been largely facilitated by recent crystal structures of IRAP and detailed computational studies. This review aims to summarize efforts of medicinal chemists toward the design and development of IRAP inhibitors, with special emphasis to factors affecting inhibitor selectivity.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Papasava
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Mavridis G, Arya R, Domnick A, Zoidakis J, Makridakis M, Vlahou A, Mpakali A, Lelis A, Georgiadis D, Tampé R, Papakyriakou A, Stern LJ, Stratikos E. A systematic re-examination of processing of MHCI-bound antigenic peptide precursors by endoplasmic reticulum aminopeptidase 1. J Biol Chem 2020; 295:7193-7210. [PMID: 32184355 PMCID: PMC7247305 DOI: 10.1074/jbc.ra120.012976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.
Collapse
Affiliation(s)
- George Mavridis
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Richa Arya
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alexander Domnick
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Jerome Zoidakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | - Lawrence J Stern
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece.
| |
Collapse
|
24
|
Reeves E, Islam Y, James E. ERAP1: a potential therapeutic target for a myriad of diseases. Expert Opin Ther Targets 2020; 24:535-544. [PMID: 32249641 DOI: 10.1080/14728222.2020.1751821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key regulator of the peptide repertoire displayed by Major Histocompatibility Complex I (MHC I) to circulating CD8 + T cells and NK cells. Studies have highlighted the essential requirement for the generation of stable peptide MHC I in regulating both innate and adaptive immune responses in health and disease.Areas covered: We review the role of ERAP1 in peptide trimming of N-terminally extended precursors that enter the ER, before loading on to MHC I, and the consequence of loss or downregulation of this activity. Polymorphisms in ERAP1 form multiple combinations (allotypes) within the population, and we discuss the contribution of this ERAP1 variation, and expression, on disease pathogenesis, including the resulting effect on both innate and adaptive immunity. We consider the current efforts to design inhibitors based on approaches using rational design and small molecule screening, and the potential effect of pharmacological modulation on the treatment of autoimmunity and cancer.Expert opinion: ERAP1 is fundamental for the regulation of immune responses, through generation of the presented peptide repertoire at the cell surface. Modulation of ERAP1 function, through design of inhibitors, may serve as a vital tool for changing immune responses in disease.
Collapse
Affiliation(s)
- Emma Reeves
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Yasmin Islam
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
25
|
Liddle J, Hutchinson JP, Kitchen S, Rowland P, Neu M, Cecconie T, Holmes DS, Jones E, Korczynska J, Koumantou D, Lea JD, Nickels L, Pemberton M, Phillipou A, Schneck JL, Sheehan H, Tinworth CP, Uings I, Wojno-Picon J, Young RJ, Stratikos E. Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation. J Med Chem 2020; 63:3348-3358. [PMID: 32109056 DOI: 10.1021/acs.jmedchem.9b02123] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.
Collapse
Affiliation(s)
- John Liddle
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jonathan P Hutchinson
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Semra Kitchen
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Rowland
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Margarete Neu
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ted Cecconie
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Duncan S Holmes
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emma Jones
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Justyna Korczynska
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, Athens 15341, Greece
| | - Jonathan D Lea
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Leng Nickels
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Michelle Pemberton
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alex Phillipou
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jessica L Schneck
- Medicinal Science and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Hester Sheehan
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Christopher P Tinworth
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Iain Uings
- Discovery Partnerships with Academia, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Justyna Wojno-Picon
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert J Young
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, Athens 15341, Greece
| |
Collapse
|
26
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
27
|
Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. J Med Chem 2019; 63:103-121. [PMID: 31841350 DOI: 10.1021/acs.jmedchem.9b00293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1's hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
Collapse
Affiliation(s)
| | | | - Digamber Rane
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | - W Frank An
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shailesh Metkar
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Marc Hickey
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Samantha Bender
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | | | | | - Irini Evnouchidou
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Roger Schilling
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Jennifer Golden
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | | |
Collapse
|
28
|
Mechanism for antigenic peptide selection by endoplasmic reticulum aminopeptidase 1. Proc Natl Acad Sci U S A 2019; 116:26709-26716. [PMID: 31843903 DOI: 10.1073/pnas.1912070116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.
Collapse
|
29
|
Tsoukalidou S, Kakou M, Mavridis I, Koumantou D, Calderone V, Fragai M, Stratikos E, Papakyriakou A, Vourloumis D. Exploration of zinc-binding groups for the design of inhibitors for the oxytocinase subfamily of M1 aminopeptidases. Bioorg Med Chem 2019; 27:115177. [PMID: 31711716 DOI: 10.1016/j.bmc.2019.115177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The oxytocinase subfamily of M1 aminopeptidases consists of three members, ERAP1, ERAP2 and IRAP that play several important biological roles, including key functions in the generation of antigenic peptides that drive human immune responses. They represent emerging targets for pharmacological manipulation of the immune system, albeit lack of selective inhibitors is hampering these efforts. Most of the previously explored small-molecule binders target the active site of the enzymes via strong interactions with the catalytic zinc(II) atom and, while achieving increased potency, they suffer in selectivity. Continuing our earlier efforts on weaker zinc(II) binding groups (ZBG), like the 3,4-diaminobenzoic acid derivatives (DABA), we herein synthesized and biochemically evaluated analogues of nine potentially weak ZBGs, based on differential substitutions of functionalized pyridinone- and pyridinethione-scaffolds, nicotinic-, isonicotinic-, aminobenzoic- and hydrazinobenzoic-acids. Crystallographic analysis of two analogues in complex with a metalloprotease (MMP-12) revealed unexpected binding topologies, consistent with the observed affinities. Our results suggest that the potency of the compounds as inhibitors of ERAP1, ERAP2 and IRAP is primarily driven by the occupation of active-site specificity pockets and their proper orientation within the enzymes.
Collapse
Affiliation(s)
- Sofia Tsoukalidou
- National Centre for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece
| | - Magdalini Kakou
- National Centre for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece
| | - Ioannis Mavridis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece
| | - Vito Calderone
- Center for Magnetic Resonance, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Fragai
- Center for Magnetic Resonance, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece
| | | | - Dionisios Vourloumis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi 15310, Greece.
| |
Collapse
|