1
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Li YQ, Yan C, Wang XF, Xian MY, Zou GQ, Gao XF, Luo R, Liu Z. A New iNKT-Cell Agonist-Adjuvanted SARS-CoV-2 Subunit Vaccine Elicits Robust Neutralizing Antibody Responses. ACS Infect Dis 2022; 8:2161-2170. [PMID: 36043698 DOI: 10.1021/acsinfecdis.2c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adjuvants are essential components of vaccines. Invariant natural killer T (iNKT) cells are a distinct subset of T cells that function to bridge the innate and adaptive immunities and are capable of mediating strong and rapid responses to a range of diseases, including cancer and infectious disease. An increasing amount of evidence suggests that iNKT cells can help fight viral infection. In particular, iNKT-secreting IL-4 is a key mediator of humoral immunity and has a positive correlation with the levels of neutralizing antibodies. As iNKT cell agonists, αGC glycolipid (α-galactosylceramide, or KRN7000) and its analogues as vaccine adjuvants have begun to provide vaccinologists with a new toolset. Herein we found that a new iNKT-cell agonist αGC-CPOEt elicited a strong cytokine response with increased IL-4 production. Remarkably, after three immunizations, SARS-CoV-2 RBD-Fc adjuvanted by αGC-CPOEt evoked robust neutralizing antibody responses that were about 5.5-fold more than those induced by αGC/RBD-Fc and 25-fold greater than those induced by unadjuvanted RBD-Fc. These findings imply that αGC-CPOEt could be investigated further as a new COVID-19 vaccine adjuvant to prevent current and future infectious disease outbreaks.
Collapse
Affiliation(s)
- Ya-Qian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cheng Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Mao-Ying Xian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Guo-Qing Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| |
Collapse
|
3
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
4
|
Painter GF, Burn OK, Hermans IF. Using agonists for iNKT cells in cancer therapy. Mol Immunol 2020; 130:1-6. [PMID: 33340930 DOI: 10.1016/j.molimm.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.
Collapse
Affiliation(s)
- Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
5
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
6
|
Kishi J, Inuki S, Kashiwabara E, Suzuki T, Dohmae N, Fujimoto Y. Design and Discovery of Covalent α-GalCer Derivatives as Potent CD1d Ligands. ACS Chem Biol 2020; 15:353-359. [PMID: 31939653 DOI: 10.1021/acschembio.9b00700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD1d is a nonpolymorphic antigen-presenting protein responsible for the regulation of natural killer T (NKT) cell activation. α-Galactosyl ceramide (α-GalCer, KRN7000) is the representative CD1d ligand that can bind to the CD1d protein. The resulting complex is recognized by the T cell receptors of the NKT cell, inducing various immune responses. Previous structure-activity relationship studies of α-GalCer have revealed that the ability of NKT cells to induce cytokines depends on the ligand structure, and in particular, ligands that form more stable complexes with CD1d display potent activity. We focused on the Cys residue of the large hydrophobic pockets of CD1d (A' pocket) and developed α-GalCer derivatives containing groups that can form covalent bonds. The assay results revealed that these ligands displayed higher levels of cytokine production and Th2 cell-type cytokine polarization response. Furthermore, the LC-MS/MS analysis indicated that the chloroacetylamide-containing ligand was covalently bound to Cys12 of CD1d, which suggests that the enhanced activities result from the formation of a stable CD1d-ligand complex. To our knowledge, this is the first ligand that allows covalent bond formation to CD1d under physiological conditions.
Collapse
Affiliation(s)
- Junichiro Kishi
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Shinsuke Inuki
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan
| | - Emi Kashiwabara
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198 Japan
| | - Yukari Fujimoto
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
7
|
Ma W, Bi J, Zhao C, Zhang Z, Liu T, Zhang G. Synthesis and biological activities of amino acids functionalized α-GalCer analogues. Bioorg Med Chem 2020; 28:115141. [PMID: 31786009 DOI: 10.1016/j.bmc.2019.115141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Invariant natural killer T-cells (iNKT-cells) are promising targets for manipulating the immune system, which can rapidly release a large amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipid antigens presented by CD1d. In this paper, we wish to report a novel series of α-GalCer analogues which were synthesized by incorporation of l-amino acid methyl esters in the C-6' position of glycolipid. The evaluation of these synthetic analogues for their capacities to stimulate iNKT-cells into producing Th1 and Th2 cytokines both in vitro and in vivo indicated that they were potent CD1d ligands and could stimulate murine spleen cells into a higher release of the Th1 cytokine IFN-γ in vitro. In vivo, Gly-α-GalCer (1) and Lys-α-GalCer (3) showed more Th1-biased responses than α-GalCer, especially analogue 3 showed the highest selectivity for IFN-γ production (IFN-γ/IL-4 = 5.32) compared with α-GalCer (IFN-γ/IL-4 = 2.5) in vivo. These novel α-GalCer analogues might be used as efficient X-ray crystallographic probes to reveal the relationship between glycolipids and CD1d proteins in α-GalCer/CD1d complexes and pave the way for developing new potent immunostimulating agents.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Chuanfang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tongxin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|