1
|
Li C, Lu Y, Li R, Wang L, Weismann A, Berndt R. Mechanically Interlocked Molecular Rotors on Pb(100). NANO LETTERS 2025; 25:1504-1511. [PMID: 39806267 PMCID: PMC11783589 DOI: 10.1021/acs.nanolett.4c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties. Unlike other phthalocyanines on this substrate, isolated AlPc molecules fluctuate between two azimuthal orientations. Density functional theory (DFT) calculations confirm two stable orientations of single molecules and indicate a relatively low rotation barrier. In STM-constructed dimers and trimers, fluctuations diminish, and various molecular orientations are stabilized. Induced collective rotation of all molecules in the trimers is observed, demonstrating their mechanical interlocking. Potential functions describing angle and distance dependencies of intermolecular and molecule-substrate interactions are derived from DFT calculations of dimers; 52 experimentally determined trimer geometries are reproduced using these potentials. This intuitive approach may prove to be useful in modeling larger structures beyond the scope of quantum mechanical descriptions.
Collapse
Affiliation(s)
- Chao Li
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Yan Lu
- Department
of Physics, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Ruoning Li
- CAS
Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS
Research/Education Center for Excellence in Molecular Sciences, Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li Wang
- Department
of Physics, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Alexander Weismann
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Richard Berndt
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
2
|
Korytár R, Evers F. Current-induced mechanical torque in chiral molecular rotors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:711-721. [PMID: 37346786 PMCID: PMC10280058 DOI: 10.3762/bjnano.14.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
There has been great endeavor to engineer molecular rotors operated by an electrical current. A frequently met operation principle is the transfer of angular momentum taken from the incident flux. In this paper, we present an alternative driving agent that works also in situations where angular momentum of the incoming flux is conserved. This situation arises typically with molecular rotors that exhibit an easy axis of rotation. For quantitative analysis we investigate here a classical model where molecule and wires are represented by a rigid curved path. We demonstrate that in the presence of chirality, the rotor generically undergoes a directed motion, provided that the incident current exceeds a threshold value. Above this threshold, the corresponding rotation frequency (per incoming particle current) for helical geometries turns out to be 2πm/M1, where m/M1 is the ratio of the mass of an incident charge carrier and the mass of the helix per winding number.
Collapse
Affiliation(s)
- Richard Korytár
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Praha 2, Czech Republic
| | - Ferdinand Evers
- Institute of Theoretical Physics, University of Regensburg, D-93050 Regensburg, Germany
| |
Collapse
|
3
|
Au-Yeung KH, Sarkar S, Kühne T, Aiboudi O, Ryndyk DA, Robles R, Lorente N, Lissel F, Joachim C, Moresco F. A Nanocar and Rotor in One Molecule. ACS NANO 2023; 17:3128-3134. [PMID: 36638056 DOI: 10.1021/acsnano.2c12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Depending on its adsorption conformation on the Au(111) surface, a zwitterionic single-molecule machine works in two different ways under bias voltage pulses. It is a unidirectional rotor while anchored on the surface. It is a fast-drivable molecule vehicle (nanocar) while physisorbed. By tuning the surface coverage, the conformation of the molecule can be selected to be either rotor or nanocar. The inelastic tunneling excitation producing the movement is investigated in the same experimental conditions for both the unidirectional rotation of the rotor and the directed movement of the nanocar.
Collapse
Affiliation(s)
- Kwan Ho Au-Yeung
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| | - Suchetana Sarkar
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| | - Tim Kühne
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| | - Oumaima Aiboudi
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany, and Faculty of Chemistry and Food Chemistry, TU Dresden, 01062Dresden, Germany
| | - Dmitry A Ryndyk
- Institute for Materials Science, TU Dresden, 01062Dresden, Germany
- Theoretical Chemistry, TU Dresden, 01062Dresden, Germany
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018Donostia-San Sebastián, Spain
| | - Nicolas Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018Donostia-San Sebastián, Spain
- Donostia international physics center, 20018Donostia-San Sebastián, Spain
| | - Franziska Lissel
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany, and Faculty of Chemistry and Food Chemistry, TU Dresden, 01062Dresden, Germany
| | - Christian Joachim
- GNS & MANA Satellite, CEMES, CNRS, 29 rue J. Marvig, 31055Toulouse, France
| | - Francesca Moresco
- Center for Advancing Electronics Dresden, TU Dresden, 01062Dresden, Germany
| |
Collapse
|
4
|
Li C, Meng X, Weismann A, von Glasenapp JS, Hamer S, Xiang F, Pignedoli CA, Herges R, Berndt R. Effect of an axial ligand on the self-assembly of molecular platforms. Phys Chem Chem Phys 2022; 24:28864-28869. [DOI: 10.1039/d2cp04760h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sub-monolayer amounts of trioxatriangulenium (TOTA) molecules functionalized with biphenyl on Ag(111) were investigated with scanning tunnelling microscopy.
Collapse
Affiliation(s)
- Chao Li
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Xiangzhi Meng
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Sebastian Hamer
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Feifei Xiang
- nanotech@surfaces Laboratory, EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- nanotech@surfaces Laboratory, EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
5
|
Meier D, Adak AK, Knecht P, Reichert J, Mondal S, Suryadevara N, Kuppusamy SK, Eguchi K, Muntwiler MK, Allegretti F, Ruben M, Barth JV, Narasimhan S, Papageorgiou AC. Rotation in an Enantiospecific Self‐Assembled Array of Molecular Raffle Wheels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dennis Meier
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Abhishek K. Adak
- Theoretical Sciences Unit & School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Bangalore 560054 India
| | - Peter Knecht
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Sourav Mondal
- Theoretical Sciences Unit & School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Bangalore 560054 India
| | - Nithin Suryadevara
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Keitaro Eguchi
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | | | - Francesco Allegretti
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Mario Ruben
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Quantum Materials and Technologies Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Centre Européen de Sciences Quantiques (CESQ) Institut de Science et d'Ingénierie Supramoléculaires (ISIS) 8 allée Gaspard Monge, BP 70028 67083 Strasbourg Cedex France
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| | - Shobhana Narasimhan
- Theoretical Sciences Unit & School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Bangalore 560054 India
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich (TUM) James Franck Strasse 1 85748 Garching Germany
| |
Collapse
|
6
|
Meier D, Adak AK, Knecht P, Reichert J, Mondal S, Suryadevara N, Kuppusamy SK, Eguchi K, Muntwiler MK, Allegretti F, Ruben M, Barth JV, Narasimhan S, Papageorgiou AC. Rotation in an Enantiospecific Self-Assembled Array of Molecular Raffle Wheels. Angew Chem Int Ed Engl 2021; 60:26932-26938. [PMID: 34555241 PMCID: PMC9299480 DOI: 10.1002/anie.202107708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Tailored nano-spaces can control enantioselective adsorption and molecular motion. We report on the spontaneous assembly of a dynamic system-a rigid kagome network with each pore occupied by a guest molecule-employing solely 2,6-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid on Ag(111). The network cavity snugly hosts the chemically modified guest, bestows enantiomorphic adsorption and allows selective rotational motions. Temperature-dependent scanning tunnelling microscopy studies revealed distinct anchoring orientations of the guest unit switching with a 0.95 eV thermal barrier. H-bonding between the guest and the host transiently stabilises the rotating guest, as the flapper on a raffle wheel. Density functional theory investigations unravel the detailed molecular pirouette of the guest and how the energy landscape is determined by H-bond formation and breakage. The origin of the guest's enantiodirected, dynamic anchoring lies in the specific interplay of the kagome network and the silver surface.
Collapse
Affiliation(s)
- Dennis Meier
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Abhishek K. Adak
- Theoretical Sciences Unit & School of Advanced MaterialsJawaharlal Nehru Centre for Advanced Scientific Research, JakkurBangalore560054India
| | - Peter Knecht
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Sourav Mondal
- Theoretical Sciences Unit & School of Advanced MaterialsJawaharlal Nehru Centre for Advanced Scientific Research, JakkurBangalore560054India
| | - Nithin Suryadevara
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and TechnologiesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Keitaro Eguchi
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | | | - Francesco Allegretti
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Mario Ruben
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Quantum Materials and TechnologiesKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Centre Européen de Sciences Quantiques (CESQ)Institut de Science et d'Ingénierie Supramoléculaires (ISIS)8 allée Gaspard Monge, BP 7002867083Strasbourg CedexFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| | - Shobhana Narasimhan
- Theoretical Sciences Unit & School of Advanced MaterialsJawaharlal Nehru Centre for Advanced Scientific Research, JakkurBangalore560054India
| | - Anthoula C. Papageorgiou
- Physics Department E20Technical University of Munich (TUM)James Franck Strasse 185748GarchingGermany
| |
Collapse
|
7
|
Hamer S, von Glasenapp J, Röhricht F, Li C, Berndt R, Herges R. Azimuthal Dipolar Rotor Arrays on Surfaces. Chemistry 2021; 27:17452-17458. [PMID: 34664752 PMCID: PMC9298050 DOI: 10.1002/chem.202103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/18/2022]
Abstract
A set of dipolar molecular rotor compounds was designed, synthesized and adsorbed as self-assembled 2D arrays on Ag(111) surfaces. The title molecules are constructed from three building blocks: (a) 4,8,12-trioxatriangulene (TOTA) platforms that are known to physisorb on metal surfaces such as Au(111) and Ag(111), (b) phenyl groups attached to the central carbon atom that function as pivot joints to reduce the barrier to rotation, (c) pyridine and pyridazine units as small dipolar units on top. Theoretical calculations and scanning tunneling microscopy (STM) investigations hint at the fact that the dipoles of neighboring rotors interact through space through pairs of energetically favorable head-to-tail arrangements.
Collapse
Affiliation(s)
- Sebastian Hamer
- Otto-Diels-Institut für Organische ChemieKiel UniversityOtto-Hahn-Platz 424098KielGermany
| | | | - Fynn Röhricht
- Otto-Diels-Institut für Organische ChemieKiel UniversityOtto-Hahn-Platz 424098KielGermany
| | - Chao Li
- Institut für Experimentelle und Angewandte PhysikKiel UniversityLeibnizstrasse 1924098KielGermany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte PhysikKiel UniversityLeibnizstrasse 1924098KielGermany
| | - Rainer Herges
- Otto-Diels-Institut für Organische ChemieKiel UniversityOtto-Hahn-Platz 424098KielGermany
| |
Collapse
|
8
|
Qu K, Duan P, Wang JY, Zhang B, Zhang QC, Hong W, Chen ZN. Capturing the Rotation of One Molecular Crank by Single-Molecule Conductance. NANO LETTERS 2021; 21:9729-9735. [PMID: 34761680 DOI: 10.1021/acs.nanolett.1c03626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unveiling the internal dynamics of rotation in molecular machine at single-molecule scale is still a challenge. In this work, three crank-shaped molecules are elaborately designed with the conformational flipping between syn and anti fulfilled by two naphthyl groups rotating freely along 1,3-butadiynyl axis. By investigating the single-molecule conductance using scanning tunnelling microscope break junction (STM-BJ) technique and theoretical simulation, the internal rotation of these crank-shaped molecules is well identified through low and high conductance corresponding to syn- and anti-conformations. As demonstrated by theoretically computational study, the orbital energy changes with the conformational flipping and influences the intraorbital quantum interference, thus eventually modulating the single-molecule conductance. This work demonstrates single-molecule conductance measurement to be a rational approach for characterizing the internal rotation of molecular machines.
Collapse
Affiliation(s)
- Kai Qu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
| | - Bochao Zhang
- Department of Pharmacy, Xiamen Medical College, Xiamen 361005, China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Eisenhut F, Kühne T, Monsalve J, Srivastava S, Ryndyk DA, Cuniberti G, Aiboudi O, Lissel F, Zobač V, Robles R, Lorente N, Joachim C, Moresco F. One-way rotation of a chemically anchored single molecule-rotor. NANOSCALE 2021; 13:16077-16083. [PMID: 34549747 DOI: 10.1039/d1nr04583k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present the chemical anchoring of a DMBI-P molecule-rotor to the Au(111) surface after a dissociation reaction. At the temperature of 5 K, the anchored rotor shows a sequential unidirectional rotational motion through six defined stations induced by tunneling electrons. A typical voltage pulse of 400 mV applied on a specific location of the molecule causes a unidirectional rotation of 60° with a probability higher than 95%. When the temperature of the substrate increases above 20 K, the anchoring is maintained and the rotation stops being unidirectional and randomly explores the same six stations. Density functional theory simulations confirm the anchoring reaction. Experimentally, the rotation shows a clear threshold at the onset of the C-H stretch manifold, showing that the molecule is first vibrationally excited and later it decays into the rotational degrees of freedom.
Collapse
Affiliation(s)
- Frank Eisenhut
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.
| | - Tim Kühne
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.
| | - Jorge Monsalve
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.
| | - Saurabh Srivastava
- GNS & MANA Satellite, CEMES, CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex, France
| | - Dmitry A Ryndyk
- Institute for Materials Science, TU Dresden, 01062 Dresden, Germany
- Theoretical Chemistry, TU Dresden, 01062 Dresden, Germany
| | | | - Oumaima Aiboudi
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany and Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Franziska Lissel
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany and Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Vladimír Zobač
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain.
| | - Christian Joachim
- GNS & MANA Satellite, CEMES, CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex, France
| | - Francesca Moresco
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
10
|
Johannsen S, Ossinger S, Markussen T, Tuczek F, Gruber M, Berndt R. Electron-Induced Spin-Crossover in Self-Assembled Tetramers. ACS NANO 2021; 15:11770-11778. [PMID: 34133115 DOI: 10.1021/acsnano.1c02698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spin crossover compound Fe(H2B(pyrazole)(pyridylpyrazole))2 was investigated in detail on Ag(111) with scanning tunneling microscopy (STM). A large fraction of the deposited molecules condenses into gridlike tetramers. Two molecules of each tetramer may be converted between two states by current injection. We attribute this effect to a spin transition. This interpretation is supported by control experiments on the analogous, magnetically passive Zn compound that forms virtually identical tetramers but exhibits no switching. The switching yields were studied for various electron energies, and the resulting values exceed those reported from other SCO systems by 2 orders of magnitude. The other two molecules of a tetramer were immutable. However, they may be used as contacts for current injection that leads to conversion of one of their neighbors. This "remote" switching is fairly efficient with yields reduced by only one to two orders of magnitude compared to direct excitation of a switchable molecule. We present a model of the tetramer structure that reproduces key observations from the experiments. In particular, sterical blocking prevents spin crossover of two molecules of a tetramer. Density functional theory calculations show that the model indeed represents a minimum energy structure. They also reproduce STM images and corroborate a remote-switching mechanism that is based on electron transfer between molecules.
Collapse
Affiliation(s)
- Sven Johannsen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Sascha Ossinger
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Troels Markussen
- Synopsys Denmark, Fruebjergvej 3, Postbox 4, DK-2100 Copenhagen, Denmark
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, 24098 Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany
| |
Collapse
|
11
|
Frauhammer T, Gerhard L, Edelmann K, Lindner M, Valášek M, Mayor M, Wulfhekel W. Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip. Phys Chem Chem Phys 2021; 23:4874-4881. [PMID: 33616122 DOI: 10.1039/d0cp06146h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional molecular groups mounted on specific foot structures are ideal model systems to study intermolecular interactions, due to the possibility to separate the functionality and the adsorption mechanism. Here, we report on the rotational switching of a thioacetate group mounted on a tripodal tetraphenylmethane (TPM) derivative adsorbed in ordered islands on a Au(111) surface. Using low temperature scanning tunnelling microscopy, individual freestanding molecular groups of the lattice can be switched between two bistable orientations. The functional dependence of this rotational switching on the sample bias and tip-sample distance allows us to model the energy landscape of this molecular group as an electric dipole in the electric field of the tunnelling junction. As expected for the interaction of two dipoles, we found states of neighbouring molecules to be correlated.
Collapse
Affiliation(s)
- Timo Frauhammer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Lukas Gerhard
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Kevin Edelmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Marcin Lindner
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland and Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), 510275 Guangzhou, China.
| | - Wulf Wulfhekel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| |
Collapse
|
12
|
Kühne T, Au-Yeung KH, Eisenhut F, Aiboudi O, Ryndyk DA, Cuniberti G, Lissel F, Moresco F. STM induced manipulation of azulene-based molecules and nanostructures: the role of the dipole moment. NANOSCALE 2020; 12:24471-24476. [PMID: 33305772 DOI: 10.1039/d0nr06809h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Among the different mechanisms that can be used to drive a molecule on a surface by the tip of a scanning tunneling microscope at low temperature, we used voltage pulses to move azulene-based single molecules and nanostructures on Au(111). Upon evaporation, the molecules partially cleave and form metallo-organic dimers while single molecules are very scarce, as confirmed by simulations. By applying voltage pulses to the different structures under similar conditions, we observe that only one type of dimer can be controllably driven on the surface, which has the lowest dipole moment of all investigated structures. Experiments under different bias and tip height conditions reveal that the electric field is the main driving force of the directed motion. We discuss the different observed structures and their movement properties with respect to their dipole moment and charge distribution on the surface.
Collapse
Affiliation(s)
- Tim Kühne
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|