1
|
Cao M, Ma X, Wang C, Zou W, Wang F, Yu B, Cong H, Shen Y. Design of donor-acceptor conjugated polymers based on diketopyrrolopyrrole for NIR-II multifunctional imaging. J Mater Chem B 2024; 12:2294-2303. [PMID: 38344907 DOI: 10.1039/d3tb02864j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Diketopyrrolopyrrole (DPP) is an excellent photosensitizer and photothermal agent with the advantages of good planarity, strong electron affinity, high electron mobility, easy purification, easy structural modification and high molar absorption coefficient. It is regarded as one of the ideal choices for the design and synthesis of efficient organic photovoltaic materials. Therefore, two kinds of donor-acceptor (D-A) conjugated polymers were designed and synthesized with DPP as the acceptor, and their optical properties and applications in the near-infrared region were studied. The quantum yield (QY) of PBDT-DPP is 0.46%, and the highest temperature reached within 10 minutes after irradiation with a 660 nm laser is 60 °C. Another polymer, EDOT-DPP, has a QY of 0.48%, and its semiconductor polymer nanoparticle aqueous solution can reach 60 °C within 12 minutes under laser irradiation, achieving photothermal treatment of nude mice tumors. Both polymer NPs have good biocompatibility and promising applications in bioimaging and photothermal therapy.
Collapse
Affiliation(s)
- Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266071, China
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Wentao Zou
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
2
|
Yuan L, Su Y, Zhang R, Gao J, Yu B, Cong H, Shen Y. NIR-II organic small molecule probe for labeling lymph nodes and guiding tumor imaging. Talanta 2024; 266:125123. [PMID: 37639868 DOI: 10.1016/j.talanta.2023.125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Organic small molecule fluorescent groups have injected new material support into the field of medical imaging due to their unique luminescence mechanism and easy tuning of structure. The great potential of NIR-II window imaging forces us to continuously optimize the structure of organic fluorophores to design better fluorescent molecules for fluorescence imaging-guided surgery. An ideal organic small molecule fluorescent group: it can penetrate into the inside of the organism, clearly present the internal structure and the edge contour of different tissues, so as to perfectly achieve internal imaging and accurately guide external surgery. In vivo, fluorescent groups do not damage normal tissues and organs. However, problems such as low quantum yield and poor biocompatibility greatly limit the clinical transformation of NIR-II fluorescent small molecules. To avoid the shortcomings of NIR-II fluorescent probes as much as possible and better realize image-guided surgery, in this experiment, the biplane donor unit was incorporated into the twisted D-π-A-π-D structure to expand the conjugated structure of the fluorescent group, which not only realized NIR-II emission, but also had high quantum yield and biosafety.
Collapse
Affiliation(s)
- Lin Yuan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yingbin Su
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Runfeng Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, And Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
3
|
Deng C, Zheng M, Xin J, An F. A nanoparticle composed of totally hospital-available drugs and isotope for fluorescence/SPECT dual-modal imaging-guided photothermal therapy to inhibit tumor metastasis. J Colloid Interface Sci 2023; 651:384-393. [PMID: 37544227 DOI: 10.1016/j.jcis.2023.07.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
As primary sites of tumor metastasis, sentinel lymph nodes (SLNs) require a highly biocompatible theranostic platform for precise localization and treatment to inhibit tumor metastasis. Herein, indocyanine green-human serum albumin (ICG-HSA) nanoparticles (NPs) were fabricated by ICG-induced self-assembly and radiolabeled with technetuim-99 m (99mTc). The fabricated NPs were composed of hospital-available drugs and isotopes, making them highly biocompatible for in vivo applications. In a mouse model of SLN metastasis, the prepared NPs exhibited excellent capacity for preoperative planning by single-photon emission computed tomography (SPECT) imaging-enabled SLN localization, near-infrared fluorescence (NIRF) imaging-enabled intraoperative real-time monitoring, and SLN photothermal treatment. Photothermal treatment with SLN enhanced the inhibition of lung metastasis and significantly increased the survival time of mice. The prepared NPs were highly biocompatible and exhibited efficient theranostic properties for inhibiting cancer metastasis, making them promising candidates for clinical translation.
Collapse
Affiliation(s)
- Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, China; School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Meichen Zheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, China; School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
4
|
Ren H, Hu Q, Yang J, Zhou X, Liu X, Tang J, Hu H, Shen Y, Zhou Z. Single-Molecule Dendritic MRI Nanoprobes Reveal the Size-Dependent Tumor Entrance. Adv Healthc Mater 2023; 12:e2302210. [PMID: 37715937 DOI: 10.1002/adhm.202302210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Indexed: 09/18/2023]
Abstract
The tumor entrance of drug delivery systems, including therapeutic proteins and nanomedicine, plays an essential role in affecting the treatment outcome. Nanoparticle size is a critical but contradictory factor in making a trade-off among blood circulation, tumor accumulation, and penetration. Here, this work designs a series of single-molecule gadolinium (Gd)-based magnetic resonance imaging (MRI) nanoprobes with well-defined sizes to precisely explore the size-dependent tumor entrance in vivo. The MRI nanoprobes obtained by divergent synthesis contain a core molecule of macrocyclic Gd(III)-chelate and different layers of dendritic lysine units, mimicking globular protein. This work finds that the r1 relaxivity and MR imaging signals increase with the nanoparticle size. The nanoprobe with a lower limit of critical size threshold ≈8.0 nm achieves superior tumor accumulation and penetration. These single-molecule MRI nanoprobes can be served to precisely examine the size-related nanoparticle-biological interactions.
Collapse
Affiliation(s)
- Huiming Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Qiuhui Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
5
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
6
|
Fan M, Li Z, Feng G, Zhang Y, Zhang W, Yang C, Shao Y, Liao C, Xu G, Xu Z. Overcome the "Buckets Effect": Integration of AIEgens into Proteins for Fluorescence-Enhanced Two-Photon Imaging. Adv Healthc Mater 2023; 12:e2301568. [PMID: 37499068 DOI: 10.1002/adhm.202301568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Luminogens with aggregation-induced emission characteristics (AIEgens) are considered good options for two-photon (2P) probes, owing to their flexibility of design, heavy-metal-free composition, and resistance to photobleaching. However, the design principles for large 2P absorption cross-section (δ) generally require high coplanarity, strong donor-acceptor (D-A) interactions, and long conjugation, which can severely weaken the brightness of AIEgens at the aggregated state and undermine their potential in 2P fluorescence imaging (2PFI). Exploration of a feasible approach to overcome the "Buckets Effect" of AIEgen-based 2P probes is thus a fascinating yet challenging task. Herein, an AIEgen, namely (Z)-2-(4-aminophenyl)-3-(5-(4-(bis(4-methoxyphenyl)amino)phenyl)thiophen-2-yl)acrylonitrile (MTAA) is designed to have a big δ according to the calculation result and a low fluorescence quantum yield (QY) of 2.2% in dimethyl sulfoxide (DMSO). Impressively, upon integrating into bovine serum albumin (BSA), the protein-sized MTAA@BSA dots exhibit a 25-fold higher fluorescence QY compared to MTAA molecules, contributing to an imaging depth of 818 µm in the brain vasculature. The retention and clearance of MTAA@BSA dots in the liver and kidney are also studied using 2PFI. Overall, this work provides a facile approach to overcome the "Buckets Effect" of AIEgen to generate highly efficient, reliable, and biocompatible 2P probes.
Collapse
Affiliation(s)
- Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Wenguang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yonghong Shao
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Changrui Liao
- Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
7
|
Ren H, Hu Q, Sun Y, Zhou X, Zhu Y, Dong Q, Chen L, Tang J, Hu H, Shen Y, Zhou Z. Surface chemistry mediates the tumor entrance of nanoparticles probed using single-molecule dual-imaging nanodots. Biomater Sci 2023; 11:7051-7061. [PMID: 37665277 DOI: 10.1039/d3bm01171b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The active transport of nanoparticles into solid tumors through transcytosis has been recognized as a promising way to enhance tumor accumulation and penetration, but the effect of the physicochemical properties of nanoparticles remains unclear. Herein, we develop a type of single-molecule dual imaging nanodot by divergent growth of perylenediimide (PDI)-dye-cored polylysine dendrimers and internal orthogonal conjugation of Gd(III)-based macrocyclic probes for fluorescence imaging and magnetic resonance imaging (MRI) of surface chemistry-dependent tumor entrance. The MRI and fluorescence imaging show that sixth-generation nanodots with acetylated (G6-Ac) and oligo ethylene glycol (G6-OEG) surfaces exhibit similar high tumor accumulation but different intratumor distribution. Cellular uptake and transport experiments suggest that G6-Ac nanodots have lower lysosomal entrapment (61% vs. 83%) and a higher exocytotic rate (47% vs. 29%) than G6-OEG. Therefore, G6-Ac is more likely to undergo intercellular transport through cell transcytosis, and is able to reach a tumor area distant from blood vessels, while G6-OEG mainly enters the tumor through enhanced permeability and retention (EPR) effect-based passive transport, and is not able to deliver to distant tumor areas. This study suggests that it is possible to boost the tumor entrance of nanoparticles by engineering surface chemistry for active transport.
Collapse
Affiliation(s)
- Huiming Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiuhui Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yuji Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yincong Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiuyang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Linying Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
He X, Shi P, Wu T, Yu B, Cong H, Shen Y. Preparation and Application of High-Efficiency, Antibacterial, and Antiviral PET-PTHP Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48660-48672. [PMID: 37797239 DOI: 10.1021/acsami.3c10788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Transmission through the respiratory tract is one of the most important ways for bacteria and viruses to infect the human body; the use of high-performance antibacterial and antiviral protective equipment is the most effective way to prevent the spread of respiratory diseases. However, at present, most personal protective equipment lacks the ability to kill pathogens. In this paper, a kind of polytetrahydropyrimidine-polyethylene terephthalate functional fiber (PET-PTHP fibers) with highly sustained antibacterial and antiviral properties was prepared. The inactivation rate of the fibers against Staphylococcus aureus and Escherichia coli was as high as 99.99%, and the antibacterial time was more than 72 h. The fibers have an obvious destructive effect on lentiviruses and can reduce the infection rate of lentiviruses in BxPC-3 cells from 25.4 to 9.7%. The cytotoxicity test, cell live/dead staining test, and cell proliferation test all confirmed that PET-PTHP fibers have no obvious cytotoxicity and good cytocompatibility. By applying the functional fibers to the inner layer of the masks, a new type of mask with adsorption, filtration, and killing properties against pathogens was prepared. The filtration efficiency of the new masks was 99.3%, and the pressure drop was 104 Pa. The new masks have excellent air permeability and filtration effect, meet the practical application conditions, and are of grade A; therefore, these masks provide medical protection as well as kill pathogens at the same time, further reducing the risk of human infection.
Collapse
Affiliation(s)
- Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Wang C, Wang F, Zou W, Miao Y, Zhu Y, Cao M, Yu B, Cong H, Shen Y. Donor-Acceptor-Donor small molecules for fluorescence/photoacoustic imaging and integrated photothermal therapy. Acta Biomater 2023; 164:588-603. [PMID: 37086828 DOI: 10.1016/j.actbio.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Here, a D-A-D type fluorescent conjugated molecule with a high molar absorption coefficient and emission at 1120 nm in the near-infrared region was synthesized. Conjugated molecules and two polyethylene glycol polymers with different lipophilic ends are assembled into water-soluble nanoparticles to improve their biocompatibility. Then, their physical and chemical properties were studied and compared. Compared with phospholipid-based PEG, styrene-based PEG can reduce the π-π stacking between molecules and the quenching caused by molecular aggregation. It has more advantages in particle size and fluorescence performance and can be better used in biological imaging. In addition, the Nano-particles have good photo-thermal conversion efficiency; the temperature rises to 62.8°C after 980 nm irradiation for 6 min, which can be used as a potential near-infrared II photothermal therapeutic agent. In vivo imaging experiments confirmed that nanomaterials have fluorescence, photoacoustic dual-modal imaging and good biological safety. STATEMENT OF SIGNIFICANCE: : In this work, we constructed D-A-D type dual donor fluorescent molecules using BBTD, CPDT and EDOT, and used amphiphilic polymers to improve their biocompatibility. Compared with DSPE NPs, PS-NPs can reduce intermolecular π-π stacking and increase quantum yield (QY = 0.98 %). Deep penetration and low biological toxicity make it have biomedical value and realize the integration of multi-functional collaborative imaging. This work can still be further improved and supplemented, and the molecular structure can be optimized to improve its application in biomedical imaging.
Collapse
Affiliation(s)
- Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wentao Zou
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yawei Miao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaowei Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
10
|
Liu S, Cong H, Yu B, Shen Y. Screening of a short chain antimicrobial peptide-LKLHI and its application in hydrogels for wound healing. Int J Biol Macromol 2023; 238:124056. [PMID: 36948339 DOI: 10.1016/j.ijbiomac.2023.124056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Antibacterial peptides have been widely used in the field of antibacterial due to their biocompatibility. In this work, owing to quickly screen out peptides with antibacterial effects, the bacterial membranes of E. coli and S. aureus were extracted and fixed on self-made silica gel microspheres to prepare bacterial membrane chromatography stationary phase. We successfully screened antimicrobial peptides from a peptide library composed of one-bead-one-compound by bacterial membrane chromatography. The antibacterial peptide has an effective defense effect on gram-positive bacteria, gram-negative bacteria, and fungi. In addition, the antibacterial peptide has almost no hemolysis and cytotoxicity and other excellent biocompatibility and has excellent properties such as stability, broad-spectrum antibacterial, and promotion of wound healing,and HA hydrogel carrier loaded with antimicrobial peptides was prepared, which provided the application direction of antimicrobial dressings for antimicrobial peptides. In summary, this method can screen out polypeptides with antibacterial effects, and the screened-out antibacterial peptides are expected to be applied in clinical applications.
Collapse
Affiliation(s)
- Shixiang Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| |
Collapse
|
11
|
Dye-cored polylysine dendrimer as luminescent nanoplatform for imaging-guided anticancer drug delivery. Colloids Surf B Biointerfaces 2023; 222:113130. [PMID: 36623376 DOI: 10.1016/j.colsurfb.2023.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Dendrimers have numerous applications in imaging and drug delivery. Designing a dendrimer diagnostic platform with a well-defined structure and controlled drug delivery is a formidable challenge. Here, we design dendritic polymer-platinum conjugates (G5-PEG-Pt) as pH-responsive nanovesicles for imaging-guided platinum drug delivery. The G5-PEG-Pt have a well-defined structure, intrinsically bright fluorescence, and acid-responsive drug release. The pH-responsive G5-PEG-Pt could rapidly release the platinum drug at acidic pH (5.0) than neutral pH (7.4). The G5-PEG-Pt could enter SKOV-3 human ovarian cancer cells by the endocytosis pathway and exhibited comparative cytotoxicity to free cisplatin. By virtue of the prolonged blood circulation time and the enhanced permeability and retention (EPR) effect, a 4.4-fold higher tumor platinum uptake than that of free cisplatin was achieved, potentially enhancing the therapeutic indexes of the platinum drug. Therefore, these pH-responsive platinum and fluorescent dendrimer conjugates are expected to be potent in vivo cancer optical imaging and therapy platforms.
Collapse
|
12
|
Lim B, Kim J, Desai MS, Wu W, Chae I, Lee SW. Elastic Fluorescent Protein-Based Down-Converting Optical Films for Flexible Display. Biomacromolecules 2023; 24:118-131. [PMID: 36507771 DOI: 10.1021/acs.biomac.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based material design provides great advantages to developing smart biomaterials with tunable structures and desired functions. They have been widely used in many biomedical applications including tissue engineering and drug delivery. However, protein-based materials are not yet widely used in optoelectronic materials despite their excellent optical and tunable mechanical properties. Here, we synthesized engineered fluorescent proteins (FPs) fused with elastic protein for the development of optoelectrical down-converting optical filters for flexible display materials. We synthesized sequence-specific FPs to tune blue, green, yellow, and red colors and fused them with elastic protein to tune mechanical properties. We fabricated flexible self-supporting film materials and characterized mechanical properties and down-converting optical properties. We also fabricated a hybrid light-emitting diode (LED) to down convert blue to desired green, red, and white colors. Furthermore, we constructed a flexible white LED using organic LED as a flexible substrate. Our modular synthesis approach of tunable bio-optoelectrical material approaches will be useful to design future biocompatible and flexible display materials and technologies.
Collapse
Affiliation(s)
- Butaek Lim
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Jinyeong Kim
- Samsung Display Co Ltd, 1 Samsung-ro, Giheung-gu, Yongin-si17113, Republic of Korea
| | - Malav S Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Weiyu Wu
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States
| | - Inseok Chae
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California94720, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
13
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Zhao X, Zhang L, Lv X, Liu J, Liu X, Zhang Y, Zhang D, Li S, Wang Q. Large-area fluorescence enhancement of R6G based on a uniform PVA-Au plasmonic substrate. OPTICS EXPRESS 2022; 30:43281-43292. [PMID: 36523029 DOI: 10.1364/oe.472908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
With the development of surface enhanced fluorescence (SEF) spectroscopy technology, uniform and low-cost SEF substrate is urgently needed. In this paper, the nanocomposite films of poly (vinyl alcohol) (PVA) embedded with in-situ Au particles, their localized surface plasmon resonance (LSPR) bands locate at different wavelengths from 525 nm to 569 nm, were used as substrates to enhance the fluorescence of rhodamine 6 G (R6G). The results shows that the uniform light emission in large area can be measured, and the maximum enhancement factor (EF) is about 13 folds. With increasing concentration of R6G films, the EF first increases and then slowly decreases. It is demonstrated that the EF greatly depends on the matching degree of the emission/excitation of R6G and the LSPR band of PVA-Au substrate. All the results further suggests that the PVA-Au substrate not only realize the fluorescence enhancement but also attenuates the fluorescence quenching at higher concentration. In addition, the local electric distribution of the substrate is simulated by using three-dimensional finite different time-domain (FDTD) to further demonstrate the mechanism of the SEF. This substrate has good development prospects in the fields of fluorescent probes and fluorescence imaging, which can be beneficial to the development of uniform and low-cost SEF substrate.
Collapse
|
15
|
Sun Y, Jing X, Liu Y, Yu B, Hu H, Cong H, Shen Y. A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. Carbohydr Polym 2022; 300:120298. [DOI: 10.1016/j.carbpol.2022.120298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
16
|
Yang J, Wang K, Zheng Y, Piao Y, Wang J, Tang J, Shen Y, Zhou Z. Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202202128. [DOI: 10.1002/anie.202202128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jiajia Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Kaiqi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Yihuan Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Jinqiang Wang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
17
|
Yang J, Wang K, Zheng Y, Piao Y, Wang J, Tang J, Shen Y, Zhou Z. Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiajia Yang
- Zhejiang University Chemical and Biological Engineering CHINA
| | - Kaiqi Wang
- Zhejiang University Chemical and Biological Engineering Zhejiang University, Yuquan Campus, the teaching's building No4 310027 Hangzhou CHINA
| | - Yihuan Zheng
- Zhejiang University Chemical and Biological Engineering CHINA
| | - Ying Piao
- Zhejiang University Chemical and Biological Engineering CHINA
| | - Jinqiang Wang
- Zhejiang University Chemical and Biological Engineering CHINA
| | - Jianbin Tang
- Zhejiang University Chemical and Biological Engineering CHINA
| | - Youqing Shen
- Zhejiang University Chemical and Biological Engineering CHINA
| | - Zhuxian Zhou
- Zhejiang Univeristy Zheda road 38, Hangzhou CHINA
| |
Collapse
|
18
|
Jouad K, Eliseeva SV, Collet G, Colas C, Da Silva D, Hiebel MA, El Brahmi N, Akssira M, Petoud S, El Kazzouli S, Suzenet F. Near-Infrared Emitting Poly(amidoamine) Dendrimers with an Anthraquinone Core toward Versatile Non-Invasive Biological Imaging. Biomacromolecules 2022; 23:1392-1402. [PMID: 35235298 DOI: 10.1021/acs.biomac.1c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Today, there is a very strong demand for versatile near-infrared (NIR) imaging agents suitable for non-invasive optical imaging in living organisms (in vivo imaging). Here, we created a family of NIR-emitting macromolecules that take advantage of the unique structure of dendrimers. In contrast to existing fluorescent dendrimers bearing fluorophores at their periphery or in their cavities, a NIR fluorescent structure is incorporated into the core of the dendrimer. Using the poly(amidoamine) dendrimer structure, we want to promote the biocompatibility of the NIR-emissive system and to have functional groups available at the periphery to obtain specific biological functionalities such as the ability to deliver drugs or for targeting a biological location. We report here the divergent synthesis and characterization by NMR and mass spectrometries of poly(amidoamine) dendrimers derived from the fluorescent NIR-emitting anthraquinone core (AQ-PAMAF). AQ-PAMAFs ranging from the generation -0.5 up to 3 were synthesized with a good level of control resulting in homogeneous and complete dendrimers. Absorption, excitation, and emission spectra, as well as quantum yields, of AQ-PAMAFs have been determined in aqueous solutions and compared with the corresponding properties of the AQ-core. It has been demonstrated that the absorption bands of AQ-PAMAFs range from UV to 750 nm while emission is observed in the range of 650-950 nm. Fluorescence macroscopy experiments confirmed that the NIR signal of AQ-PAMAFs can be detected with a satisfactory signal-to-noise ratio in aqueous solution, in blood, and through 1 mm thick tissue-mimicking phantom. The results show that our approach is highly promising for the design of an unprecedented generation of versatile NIR-emitting agents.
Collapse
Affiliation(s)
- Kamal Jouad
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.,Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Guillaume Collet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France.,Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans & Tours, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.,Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - David Da Silva
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Marie-Aude Hiebel
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Mohamed Akssira
- Faculty of Sciences and Technologies of Mohammedia, URAC 22 FSTM, University Hassan II, BP 146, 28800 Mohammedia, Morocco
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| |
Collapse
|
19
|
Liu C, Wang R, Sun Y, Yin C, Gu Z, Wu W, Jiang X. An Orthogonal Protection Strategy for Synthesizing Scaffold-Modifiable Dendrons and Their Application in Drug Delivery. ACS CENTRAL SCIENCE 2022; 8:258-267. [PMID: 35233457 PMCID: PMC8880417 DOI: 10.1021/acscentsci.1c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 05/12/2023]
Abstract
Dendrons have well-defined dendritic structures. However, it is a great challenge to preserve their high structural definition after multiple functionalization because the site-selective conjugation of different functional molecules is quite difficult. Scaffold-modifiable dendrons that have orthogonal reactive groups at the scaffold and periphery are ideal for achieving the site-specific bifunctionalization. In this paper, we present a new strategy for synthesizing scaffold-modifiable dendrons via orthogonal amino protection and a solid-phase synthesis method. This strategy renders the reactive sites at the scaffold and periphery of the dendrons a super selectivity, high reactivity, and wide applicability to various reaction types. The fourth-generation dendrons can be facilely synthesized within 2 days without structural defects as demonstrated by mass spectrometry. We conjugated doxorubicin (DOX) and phenylboronic acid (PBA) groups to the scaffold and periphery, respectively. Thanks to the PBA-enhanced lysosome escape, tumor targeting ability, and tumor permeability as well as the high drug loading content larger than 30%, the dendron-based prodrug exhibited extraordinary antitumor efficacy and could eradicate the tumors established in mice by multiple intravenous administration. This work provides a practical strategy for synthesizing scaffold-modifiable dendrons that can be a promising nanoplatform to achieve function integration in a precisely controlled manner.
Collapse
|
20
|
Guo S, Yu B, Ahmed A, Cong H, Shen Y. Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127602. [PMID: 34749230 DOI: 10.1016/j.jhazmat.2021.127602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Emerging infectious diseases caused by the spread of bacteria and viruses are a major burden on global economic development and public health. At present, most personal protective equipment has weak antibacterial and anti-viral properties. The PAN/PTHP nanofibers reported in this article provide a new method for the development of personal protective equipment. In this study, a mixture of PTHP and PAN was prepared into PAN/PTHP nanofibers with high-efficiency and long-lasting antibacterial effects (>99.999%) through the electrospinning process. Live/dead staining and cell proliferation experiments showed that the preparation of PAN/PTHP nanofibers has good cell compatibility. In addition, PAN/PTHP nanofibers show obvious destructive effects on lentiviruses. Based on these characteristics, PAN/PTHP nanofibers were applied to facial masks, which can be used as the inflatable biocidal layer of facial masks and have an excellent interception effect on particles in the air. The successful synthesis of these fascinating materials may provide new insights for the development of new protective materials.
Collapse
Affiliation(s)
- Shuaibing Guo
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Adeel Ahmed
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
21
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
22
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Fang X, Gao K, Huang J, Liu K, Chen L, Piao Y, Liu X, Tang J, Shen Y, Zhou Z. Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. J Mater Chem B 2021; 9:8594-8603. [PMID: 34705008 DOI: 10.1039/d1tb01157j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide dendrimers have a broad application in biomedical science due to their biocompatibility, diversity, and multifunctionality, but the precision synthesis of high-molecule weight peptide dendrimers remains challenging. We here report the facile and liquid-phase synthesis of molecular level precision and amino-acid built-in polylysine (PLL) dendrimers with molecular weights as high as ∼60 kDa. Three types of polyhedral oligosilsesquioxane (POSS)-cored PLL dendrimers with phenylalanine, tyrosine, or histidine as building blocks were synthesized. The precise structures of the dendrimers were confirmed by MALDI-TOF MS, GPC, and 1H NMR spectroscopy. The interior functionalized peptide dendrimers improved the encapsulation capability of SN38 and sustained the release profiles. Enhanced molecular interactions between the peptide dendrimers and drugs were explored by both NMR experiments and computer simulations. The peptide dendrimer/SN38 formulations showed potent antitumor activity against multiple cancer cell lines. We believe that this strategy can be applied to the synthesis of tailor-made functional peptide dendrimers for drug-specific delivery and other diverse biomedical applications.
Collapse
Affiliation(s)
- Xinhao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kai Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianxiang Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kexin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Linying Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
24
|
Liu K, Xiang J, Wang G, Xu H, Piao Y, Liu X, Tang J, Shen Y, Zhou Z. Linear-Dendritic Polymer-Platinum Complexes Forming Well-Defined Nanocapsules for Acid-Responsive Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44028-44040. [PMID: 34499483 DOI: 10.1021/acsami.1c12156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymeric nanocapsules hold considerable applications in cancer drug delivery, but the synthesis of well-defined nanocapsules with a tunable drug release property remains a significant challenge in fabrication. Herein, we demonstrate a supramolecular complexation strategy to assemble small molecular platinum (Pt) compounds into well-defined nanocapsules with high drug loading, acidity-sensitivity, and tunable Pt releasing profile. The design utilizes poly(ethylene glycol)-dendritic polylysine-G4/amides to complex with Pt compounds, forming stable nanocapsules with diameters approximately ∼20 nm and membrane thickness around several nanometers. The stability, drug content, and release profiles are tunable by tailoring the dendritic structure. The designated polymer-Pt nanocapsules, PEG-G4/MSA-Pt, showed sustained blood retention, preferential tumor accumulation, enhanced cellular uptake, lysosomal drug release, and nuclear delivery capability. PEG-G4/MSA-Pt showed enhanced antitumor efficacy compared to free cisplatin and other nanocapsules, which stopped the progression of both A549 cell xenografts and patient-derived xenografts (PDXs) of hepatocellular carcinoma on a mice tumor model. Thus, we believe this strategy is promising for developing Pt-based nanomedicine for cancer drug delivery.
Collapse
Affiliation(s)
- Kexin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajia Xiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guowei Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
25
|
He B, Sui X, Yu B, Wang S, Shen Y, Cong H. Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Deliv 2021; 27:1474-1490. [PMID: 33100061 PMCID: PMC7594734 DOI: 10.1080/10717544.2020.1831106] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The emergence of nanomaterials for drug delivery provides the opportunity to avoid the side effects of systemic drug administration and injury caused by the removal of tumors, delivering great promise for future cancer treatments. However, the efficacy of current nano drugs is not significantly better than that of the original drug treatments. The important reason is that nano drugs enter the tumor vasculature, remaining close to the blood vessels and unable to enter the tumor tissue or tumor cells to complete the drug delivery process. The low efficiency of drug penetration into tumors has become a bottleneck restricting the development of nano-drugs. Herein, we present a systematic overview of recent advances on the design of nano-drug carriers in drug delivery systems for enhancing drug penetration into tumors. The review is organized into four sections: The drug penetration process in tumor tissue includes paracellular and transcellular transport, which is summarized first. Strategies that promote tumor penetration are then introduced, including methods of remodeling the tumor microenvironment, charge inversion, dimensional change, and surface modification of ligands which promote tissue penetration. Conclusion and the prospects for the future development of drug penetration are finally briefly illustrated. The review is intended to provide thoughts for effective treatment of cancer by summarizing strategies for promoting the endocytosis of nano drugs into tumor cells.
Collapse
Affiliation(s)
- Bin He
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Han T, Chen Y, Wang Y, Wang S, Cong H, Yu B, Shen Y. Semiconductor small molecule IHIC/ITIC applied to photothermal therapy and photoacoustic imaging of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112257. [PMID: 34271410 DOI: 10.1016/j.jphotobiol.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Organic semiconductor small molecules IHIC and ITIC have been developed as solar cell materials, and because of their strong near-infrared absorption capabilities, they are promising for cancer phototherapy. This article reports the application of semiconductor small molecule IHIC/ITIC liposomes in photothermal therapy and photoacoustic imaging of tumors firstly. Experiments show that the liposome-loaded IHIC/ITIC material has good biocompatibility and can be effectively enriched in tumor sites. After being irradiated with laser, it can emit strong photoacoustic signals, and has achieved good results in the photothermal treatment of breast cancer mice. We believe that organic semiconductor small molecule IHIC/ITIC will become a promising photothermal agent with wonderful development possibilities.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yang Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yifan Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Li Z, Ding X, Yu B, Min Y, He B, Shen Y, Cong H. A novel M 2Ga 2GeO 7:N 3+(M = Ca, Ba, Sr; N = Cr, Nd, Er) sub-micron phosphor with multiband NIR emissions: preparation, structure, properties, and LEDs. NANOTECHNOLOGY 2021; 32:395703. [PMID: 34082407 DOI: 10.1088/1361-6528/ac07d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) emission materials can be widely applied in various fields, such as food detection, imaging, treatment, electronic products. With the trend of miniaturization of equipment, smaller materials are needed. In this work, we successfully synthesized a series of M2Ga2GeO7:N3+(M = Ca, Ba, Sr; N = Cr, Nd, Er) samples and then focused on the study of Nd3+doped Sr2Ga2GeO7(SGGO). A series of SGGO:xNd3+sub-micron phosphors were prepared via a microwave-assisted sol-gel process combined with subsequent calcination at 750 ℃, and the structural information and luminescent properties were systematically studied. SGGO is a representative tetragonal crystal and belonging to the space group of P4¯21m (113). The Nd3+ions occupy eight-coordinated Sr2+sites in the crystal lattice. From SEM analysis, the average particle size distribution is 219.7 ± 41.4 nm. The sub-micron phosphors have rich excitation spectra ranging from 350 nm to 850 nm and can produce multiband NIR emissions of 1331, 1056, and 905 nm when excited by ultraviolet and NIR light. The maximum emission intensity was obtained by optimizing the doping ratio of Nd3+ions. A commercial chip was then utilized to fabricate light-emitting diodes (LEDs) to verify its application potential in NIR-II mini-LEDs. Compared with blue light LEDs, the as-prepared LEDs had good imaging penetration depth and could be clearly observed under 10 mm of chicken breast coverage. The maximum imaging penetration depth can be 33 mm.
Collapse
Affiliation(s)
- Zhihua Li
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xin Ding
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, People's Republic of China
| | - Yu Min
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin He
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
28
|
Thompson M, Scholz C. Highly Branched Polymers Based on Poly(amino acid)s for Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1119. [PMID: 33925961 PMCID: PMC8145254 DOI: 10.3390/nano11051119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023]
Abstract
Polymers consisting of amino acid building blocks continue to receive consideration for biomedical applications. Since poly(amino acid)s are built from natural amino acids, the same building blocks proteins are made of, they are biocompatible, biodegradable and their degradation products are metabolizable. Some amino acids display a unique asymmetrical AB2 structure, which facilitates their ability to form branched structures. This review compares the three forms of highly branched polymeric structures: structurally highly organized dendrimers, dendrigrafts and the less organized, but readily synthesizable hyperbranched polymers. Their syntheses are reviewed and compared, methods of synthesis modulations are considered and variations on their traditional syntheses are shown. The potential use of highly branched polymers in the realm of biomedical applications is discussed, specifically their applications as delivery vehicles for genes and drugs and their use as antiviral compounds. Of the twenty essential amino acids, L-lysine, L-glutamic acid, and L-aspartic acid are asymmetrical AB2 molecules, but the bulk of the research into highly branched poly(amino acid)s has focused on the polycationic poly(L-lysine) with a lesser extent on poly(L-glutamic acid). Hence, the majority of potential applications lies in delivery systems for nucleic acids and this review examines and compares how these three types of highly branched polymers function as non-viral gene delivery vectors. When considering drug delivery systems, the small size of these highly branched polymers is advantageous for the delivery of inhalable drug. Even though highly branched polymers, in particular dendrimers, have been studied for more than 40 years for the delivery of genes and drugs, they have not translated in large scale into the clinic except for promising antiviral applications that have been commercialized.
Collapse
Affiliation(s)
| | - Carmen Scholz
- Department of Chemistry, University of Alabama in Huntsville, 301 Sparkman Dr., Huntsville, AL 35899, USA;
| |
Collapse
|
29
|
Ouyang Z, Gao Y, Shen M, Shi X. Dendrimer-based nanohybrids in cancer photomedicine. Mater Today Bio 2021; 10:100111. [PMID: 34027382 PMCID: PMC8134734 DOI: 10.1016/j.mtbio.2021.100111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer phototherapy with non-invasiveness and high therapeutical efficiency has emerged as a hot spot research in cancer management. Various nanomaterials have been involved in the development of novel photoactive agents to overcome the current limitations in cancer phototherapy. Dendrimers, as an excellent nanocarrier with unique physicochemical properties, have received extensive attention and much effort has been made in the development of dendrimer-based hybrid platforms for photomedicine applications. Dendrimers can be entrapped with photosensitive agents within their internal cavities and be surface modified with reactive molecules, constructing multifunctional nanoplatforms for cancer treatment. In this review, we concisely survey the design of several different kinds of dendrimer-based nanohybrids for cancer photomedicine applications, and provide an overview of their recent applications in molecular imaging, single-modality photothermal therapy or photodynamic therapy, combination therapy, and theranostics of cancer. In addition, we also briefly discuss the future perspectives in the area of dendrimer-based nanohybrids for cancer photomedicine.
Collapse
Affiliation(s)
- Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, 9020-105, Funchal, Portugal
| |
Collapse
|
30
|
Xiao J, Cong H, Wang S, Yu B, Shen Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater Sci 2021; 9:2384-2412. [PMID: 33576752 DOI: 10.1039/d0bm02013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy is the most important treatment strategy in free radical therapy. However, tumor microenvironment hypoxia is a key obstacle in PDT. In order to overcome this obstacle, the strategy of in situ production of O2/radicals by catalytic reaction in solid tumors was proposed. In recent years, it has been found that there are many oxygen-independent carbon-based free radicals that can generate toxic active free radicals under laser irradiation and lead to tumor cell death. Based on the rational design of multifunctional nano-medicine, the active free radical nano-generator has opened up a new way for the highly developed nanotechnology and tumor cooperative therapy to improve the therapeutic effect. In this paper, the research status of active free radical nano-generators, especially reactive oxygen species, including the construction mechanism of active free radical nanomaterials, is reviewed and the application of free radical nano-generators in tumor therapy is emphasized.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | |
Collapse
|
31
|
Hu S, Jiang H, Zhu J, Wang J, Wang S, Tang J, Zhou Z, Liu S, Shen Y. Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. J Control Release 2021; 330:842-850. [DOI: 10.1016/j.jconrel.2020.10.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
32
|
Zhang N, Xu Y, Xin X, Huo P, Zhang Y, Chen H, Feng N, Feng Q, Zhang Z. Dual-modal imaging-guided theranostic nanocarriers based on 2-methoxyestradiol and indocyanine green. Int J Pharm 2020; 592:120098. [PMID: 33220381 DOI: 10.1016/j.ijpharm.2020.120098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Drug toxicity and insufficient drug dosing place a limit on the effect of chemotherapy. Optimal efficacy is achieved by exposing tumor cells to the maximum tolerated dose of a chemotherapeutic drug. In this study, we developed a strategy (graphic summary) for enhancing the therapeutic and diagnostic capabilities of known chemotherapeutics. We used a dual-mode near-infrared (NIR) fluorescence/photoacoustic imaging technology to achieve actively guided tumor targeting of the photothermal therapeutic agent indocyanine green (ICG) and the chemotherapeutic drug 2-methoxyestradiol (2-ME), which were loaded into thermosensitive liposomes (TSLs) with surface-grafted tumor-targeting peptide cRGDyk (cRGDyk-2-ME@ICG-TSLs). In vitro studies demonstrated that cRGDyk-2-ME@ICG-TSLs effectively induced drug accumulation and cytotoxicity in NIR laser-irradiated B16-F10 melanoma cells using dual targeting based on the cRGDyk peptide and temperature sensitivity. An in vivo study showed that 24 h after intravenously injecting cRGDyk-2-ME@ICG-TSLs into melanoma tumor-bearing mice, the dual-mode NIR fluorescence/photoacoustic imaging could accurately identify tumors and normal tissues. In addition, the combination of cRGDyk-2-ME@ICG-TSLs and NIR radiation suppressed tumor growth in tumor-bearing nude mice and was associated with a low risk of side effects on normal organs. Our results indicate that TSLs are a suitable drug delivery system for diagnostic and chemotherapeutic agents guided by dual-mode imaging.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangying Xin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengchao Huo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nannan Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Quanling Feng
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
33
|
Tian Y, Pang L, Zhang R, Xu T, Wang S, Yu B, Gao L, Cong H, Shen Y. Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50236-50247. [PMID: 33124426 DOI: 10.1021/acsami.0c13822] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by pathogenic microorganisms have always been the Achilles heel in the clinic. In this work, to overcome this conundrum, we proposed an injectable multifunctional hydrogel material with outstanding antibacterial properties and self-healing properties and no adverse effects on health. The cross-linked hydrogel with three-dimensional (3D) networks was quickly formed via the dynamic Schiff base between amino-modified poly-tetrahydropyrimidine (PTHP-NH2) and multiple vanillin polymer P(DMA-VA) in 30 s. This hydrogel composite presents effective defense against both Gram-positive and Gram-negative bacteria, especially for the pyogenic Staphylococcus aureus. Moreover, the hydrogel showed almost no hemolysis and cytotoxicity. In vivo investigations indicated that hydrogels effectively killed S. aureus and protected against deterioration of inflammation. Besides, bioimaging of mice demonstrated that the hydrogel could be completely metabolized within 16 h. In a nutshell, given its outstanding antibacterial property and biocompatibility, the novel hydrogel could be an ideal candidate for the subcutaneous infection application.
Collapse
Affiliation(s)
- Yongchang Tian
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Rong Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Taimin Xu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lilong Gao
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
34
|
Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
Dendritic polymers have highly branched three-dimensional architectures, the fourth type apart from linear, cross-linked, and branched one. They possess not only a large number of terminal functional units and interior cavities, but also a low viscosity with weak or no entanglement. These features endow them with great potential in various biomedicine applications, including drug delivery, gene therapy, tissue engineering, immunoassay and bioimaging. Most review articles related to bio-related applications of dendritic polymers focus on their drug or gene delivery, while very few of them are devoted to their function as cancer diagnosis agents, which are essential for cancer treatment. In this review, we will provide comprehensive insights into various dendritic polymer-based cancer diagnosis agents. Their classification and preparation are presented for readers to have a precise understanding of dendritic polymers. On account of physical/chemical properties of dendritic polymers and biological properties of cancer, we will suggest a few design strategies for constructing dendritic polymer-based diagnosis agents, such as active or passive targeting strategies, imaging reporters-incorporating strategies, and/or internal stimuli-responsive degradable/enhanced imaging strategies. Their recent applications in in vitro diagnosis of cancer cells or exosomes and in vivo diagnosis of primary and metastasis tumor sites with the aid of single/multiple imaging modalities will be discussed in great detail. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxing Wu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California, USA
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Mikhtaniuk SE, Bezrodnyi VV, Shavykin OV, Neelov IM, Sheveleva NN, Penkova AV, Markelov DA. Comparison of Structure and Local Dynamics of Two Peptide Dendrimers with the Same Backbone but with Different Side Groups in Their Spacers. Polymers (Basel) 2020; 12:E1657. [PMID: 32722466 PMCID: PMC7464546 DOI: 10.3390/polym12081657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.
Collapse
Affiliation(s)
- Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Valeriy V. Bezrodnyi
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Oleg V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Anastasia V. Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| |
Collapse
|
36
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|