1
|
Bhullar AS, Zhang L, Burns N, Cheng X, Guo P. Voltage controlled shutter regulates channel size and motion direction of protein aperture as durable nano-electric rectifier-----An opinion in biomimetic nanoaperture. Biomaterials 2022; 291:121863. [PMID: 36356474 PMCID: PMC9766157 DOI: 10.1016/j.biomaterials.2022.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
In optical devices such as camera or microscope, an aperture is used to regulate light intensity for imaging. Here we report the discovery and construction of a durable bio-aperture at nanometerscale that can regulate current at the pico-ampere scale. The nano-aperture is made of 12 identical protein subunits that form a 3.6-nm channel with a shutter and "one-way traffic" property. This shutter responds to electrical potential differences across the aperture and can be turned off for double stranded DNA translocation. This voltage enables directional control, and three-step regulation for opening and closing. The nano-aperture was constructed in vitro and purified into homogeneity. The aperture was stable at pH2-12, and a temperature of -85C-60C. When an electrical potential was held, three reproducible discrete steps of current flowing through the channel were recorded. Each step reduced 32% of the channel dimension evident by the reduction of the measured current flowing through the aperture. The current change is due to the change of the resistance of aperture size. The transition between these three distinct steps and the direction of the current was controlled via the polarity of the voltage applied across the aperture. When the C-terminal of the aperture was fused to an antigen, the antibody and antigen interaction resulted in a 32% reduction of the channel size. This phenomenon was used for disease diagnosis since the incubation of the antigen-nano-aperture with a specific cancer antibody resulted in a change of 32% of current. The purified truncated cone-shape aperture automatically self-assembled efficiently into a sheet of the tetragonal array via head-to-tail self-interaction. The nano-aperture discovery with a controllable shutter, discrete-step current regulation, formation of tetragonal sheet, and one-way current traffic provides a nanoscale electrical circuit rectifier for nanodevices and disease diagnosis.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Zhan J, Wang Y, Ma S, Qin Q, Wang L, Cai Y, Yang Z. Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis. Bioact Mater 2021; 9:120-133. [PMID: 34820560 PMCID: PMC8586590 DOI: 10.1016/j.bioactmat.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/27/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Organelles are responsible for the efficient storage and transport of substances in living systems. A myriad of extracellular vesicles (EVs) acts as a bridge to exchange signaling molecules in cell–cell communication, and the highly dynamic tubulins and actins contribute to efficient intracellular substance transport. The inexhaustible cues of natural cargo delivery by organelles inspire researchers to explore the construction of biomimetic architectures for “smart” delivery carriers. Herein, we report a 10-hydroxycamptothecin (HCPT)-peptide conjugate HpYss that simulates the artificial EV-to-filament transformation process for precise liver cancer therapy. Under the sequential stimulus of extracellular alkaline phosphatase (ALP) and intracellular glutathione (GSH), HpYss proceeds via tandem self-assembly with a morphological transformation from nanoparticles to nanofibers. The experimental phase diagram elucidates the influence of ALP and GSH contents on the self-assembled nanostructures. In addition, the dynamic transformation of organelle-mimetic architectures that are formed by HpYss in HepG2 cells enables the efficient delivery of the anticancer drug HCPT to the nucleus, and the size–shape change from extracellular nanoparticles (50–100 nm) to intracellular nanofibers (4–9 nm) is verified to be of key importance for nuclear delivery. Nuclear targeting of HpYss amplifies apoptosis, thus significantly enhancing the inhibitory effect of HCPT (>10-fold) to HepG2 cells. Benefitting from the spatiotemporally controlled nanostructures, HpYss exhibited deep penetration, enhanced accumulation, and long-term retention in multicellular spheroid and xenograft models, potently abolishing liver tumor growth and preventing lung metastasis. We envision that our organelle-mimicking delivery strategy provides a novel paradigm for designing nanomedicine to cancer therapy. An organelle-inspired nanomedicine for precise liver cancer therapy is proposed. The delivery process mimics the transport of extracellular vesicles and filaments. The extra- and intracellular tandem self-assembly influence the nanostructures. The dynamic size–shape change of nanomedicine actuates the nuclear delivery. Spatiotemporally controlled nanomedicine abolishes liver tumor growth and lung metastasis.
Collapse
Affiliation(s)
- Jie Zhan
- Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, 528300, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yuhan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, And National Institute of Functional Materials, Nankai University, Tianjin, 300071, China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qin Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, And National Institute of Functional Materials, Nankai University, Tianjin, 300071, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, And National Institute of Functional Materials, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Rey S, Faruqui N, Hoose A, Dondi C, Ryadnov MG. Designer protein pseudo-capsids targeting intracellular bacteria. Biomater Sci 2021; 9:6807-6812. [PMID: 34491257 DOI: 10.1039/d1bm01235e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for antimicrobial materials capable of addressing challenges conventional antibiotics fail to address. The ability to target intracellular bacteria remains one of the most fundamental tasks for contemporary antimicrobial treatments. Here we report engineered protein pseudo-capsids targeting bacteria internalised in macrophages. Using a combination of live-cell imaging and single-cell electron microscopy analysis we show that these materials effectively disrupt the bacteria without affecting the host cells. The study offers a disruptive antimicrobial strategy demonstrating potential for developing principally more challenging mechanisms for bacteria to overcome.
Collapse
Affiliation(s)
- Stephanie Rey
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Alex Hoose
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Camilla Dondi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK. .,Department of Physics, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
4
|
Lemmens LM, Ottmann C, Brunsveld L. Conjugated Protein Domains as Engineered Scaffold Proteins. Bioconjug Chem 2020; 31:1596-1603. [PMID: 32374984 PMCID: PMC7303964 DOI: 10.1021/acs.bioconjchem.0c00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 01/12/2023]
Abstract
Assembly of proteins into higher-order complexes generates specificity and selectivity in cellular signaling. Signaling complex formation is facilitated by scaffold proteins that use modular scaffolding domains, which recruit specific pathway enzymes. Multimerization and recombination of these conjugated native domains allows the generation of libraries of engineered multidomain scaffold proteins. Analysis of these engineered proteins has provided molecular insight into the regulatory mechanism of the native scaffold proteins and the applicability of these synthetic variants. This topical review highlights the use of engineered, conjugated multidomain scaffold proteins on different length scales in the context of synthetic signaling pathways, metabolic engineering, liquid-liquid phase separation, and hydrogel formation.
Collapse
Affiliation(s)
- Lenne
J. M. Lemmens
- Laboratory of Chemical Biology, Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|