1
|
Kumar P, Singh G, Guan X, Roy S, Lee J, Kim IY, Li X, Bu F, Bahadur R, Iyengar SA, Yi J, Zhao D, Ajayan PM, Vinu A. The Rise of Xene Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403881. [PMID: 38899836 DOI: 10.1002/adma.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Xenes, mono-elemental atomic sheets, exhibit Dirac/Dirac-like quantum behavior. When interfaced with other 2D materials such as boron nitride, transition metal dichalcogenides, and metal carbides/nitrides/carbonitrides, it enables them with unique physicochemical properties, including structural stability, desirable bandgap, efficient charge carrier injection, flexibility/breaking stress, thermal conductivity, chemical reactivity, catalytic efficiency, molecular adsorption, and wettability. For example, BN acts as an anti-oxidative shield, MoS2 injects electrons upon laser excitation, and MXene provides mechanical flexibility. Beyond precise compositional modulations, stacking sequences, and inter-layer coupling controlled by parameters, achieving scalability and reproducibility in hybridization is crucial for implementing these quantum materials in consumer applications. However, realizing the full potential of these hybrid materials faces challenges such as air gaps, uneven interfaces, and the formation of defects and functional groups. Advanced synthesis techniques, a deep understanding of quantum behaviors, precise control over interfacial interactions, and awareness of cross-correlations among these factors are essential. Xene-based hybrids show immense promise for groundbreaking applications in quantum computing, flexible electronics, energy storage, and catalysis. In this timely perspective, recent discoveries of novel Xenes and their hybrids are highlighted, emphasizing correlations among synthetic parameters, structure, properties, and applications. It is anticipated that these insights will revolutionize diverse industries and technologies.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - In Young Kim
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xiaomin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
2
|
Awate S, Mostek B, Kumari S, Dong C, Robinson JA, Xu K, Fullerton-Shirey SK. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15785-15796. [PMID: 36926818 PMCID: PMC10064313 DOI: 10.1021/acsami.2c13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Electric-double-layer (EDL) gating can induce large capacitance densities (∼1-10 μF cm-2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm-2 for electrons and 1.4 × 1013 cm-2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm-1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brendan Mostek
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shalini Kumari
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Joshua A. Robinson
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School
of Chemistry and Materials Science, Rochester
Institute of Technology, Rochester, New York 14623, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Li L, Yu X, Lin Z, Cai Z, Cao Y, Kong W, Xiang Z, Gu Z, Xing X, Duan X, Song Y. Interface Capture Effect Printing Atomic-Thick 2D Semiconductor Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207392. [PMID: 36128664 DOI: 10.1002/adma.202207392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/17/2022] [Indexed: 06/15/2023]
Abstract
2D semiconductor crystals offer the opportunity to further extend Moore's law to the atomic scale. For practical and low-cost electronic applications, directly printing devices on substrates is advantageous compared to conventional microfabrication techniques that utilize expensive photolithography, etching, and vacuum-metallization processes. However, the currently printed 2D transistors are plagued by unsatisfactory electrical performance, thick semiconductor layers, and low device density. Herein, a facile and scalable 2D semiconductor printing strategy is demonstrated utilizing the interface capture effect and hyperdispersed 2D nanosheet ink to fabricate high-quality and atomic-thick semiconductor thin-film arrays without additional surfactants. Printed robust thin-film transistors using 2D semiconductors (e.g., MoS2 ) and 2D conductive electrodes (e.g., graphene) exhibit high electrical performance, including a carrier mobility of up to 6.7 cm2 V-1 s-1 and an on/off ratio of 2 × 106 at 25 °C. As a proof of concept, 2D transistors are printed with a density of ≈47 000 devices per square centimeter. In addition, this method can be applied to many other 2D materials, such as NbSe2 , Bi2 Se3 , and black phosphorus, for printing diverse high-quality thin films. Thus, the strategy of printable 2D thin-film transistors provides a scalable pathway for the facile manufacturing of high-performance electronics at an affordable cost.
Collapse
Affiliation(s)
- Lihong Li
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Xiaoxia Yu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhenren Cai
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Yawei Cao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Wei Kong
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Zhongyuan Xiang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Zhengkun Gu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Tan J, Hong K, Shen G, Yan Y. The enhanced photocatalystic activity in FeS/WS2 nanosheets with a charge separation effect. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Zhang Z, Yang X, Liu K, Wang R. Epitaxy of 2D Materials toward Single Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105201. [PMID: 35038381 PMCID: PMC8922126 DOI: 10.1002/advs.202105201] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/12/2021] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) materials exhibit unique electronic, optical, magnetic, mechanical, and thermal properties due to their special crystal structure and thus have promising potential in many fields, such as in electronics and optoelectronics. To realize their real applications, especially in integrated devices, the growth of large-size single crystal is a prerequisite. Up to now, the most feasible way to achieve 2D single crystal growth is the epitaxy: growth of 2D materials of one or more specific orientations with single-crystal substrate. Only when the 2D domains have the same orientation, they can stitch together seamlessly and single-crystal 2D films can be obtained. In this view, four different epitaxy modes of 2D materials on various substrates are presented, including van der Waals epitaxy, edge epitaxy, step-guided epitaxy, and in-plane epitaxy focusing on the growth of graphene, hexagonal boron nitride (h-BN), and transition metal dichalcogenide (TMDC). The lattice symmetry relation and the interaction between 2D materials and the substrate are the key factors determining the epitaxy behaviors and thus are systematically discussed. Finally, the opportunities and challenges about the epitaxy of 2D single crystals in the future are summarized.
Collapse
Affiliation(s)
- Zhihong Zhang
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing Key Laboratory for Magneto‐Photoelectrical Composite and Interface ScienceInstitute for Multidisciplinary InnovationSchool of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083China
- Interdisciplinary Institute of Light‐Element Quantum Materials and Research Centre for Light‐Element Advanced MaterialsPeking UniversityBeijing100871China
| | - Xiaonan Yang
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing Key Laboratory for Magneto‐Photoelectrical Composite and Interface ScienceInstitute for Multidisciplinary InnovationSchool of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronicsSchool of PhysicsPeking UniversityBeijing100871China
- Interdisciplinary Institute of Light‐Element Quantum Materials and Research Centre for Light‐Element Advanced MaterialsPeking UniversityBeijing100871China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing Key Laboratory for Magneto‐Photoelectrical Composite and Interface ScienceInstitute for Multidisciplinary InnovationSchool of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083China
| |
Collapse
|
6
|
Wang X, Long R. Photoinduced Anomalous Electron Transfer Dynamics at a Lateral MoS 2-Graphene Covalent Junction. J Phys Chem Lett 2021; 12:7553-7559. [PMID: 34351765 DOI: 10.1021/acs.jpclett.1c02169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoinduced charge separation significantly affects the optoelectronic performance of the lateral MoS2-graphene junctions. Generally, an adiabatic mechanism governs electron transfer (ET) at a chemically binding interface. Counterintuitively, we demonstrate, using nonadiabatic (NA) molecular dynamics, that an NA mechanism dominates the ET from MoS2 to graphene in the lateral MoS2-graphene covalent junction. The anomalous ET mechanism arising from the built-in electric field formed at the interface that decreases the donor-acceptor interaction by driving electrons and holes moving to opposite directions. Driven by both graphene and MoS2 vibrations, the photoexcited electrons on MoS2 rapidly transfer into graphene by the NA mechanism within 200 fs, which is faster than electron-phonon energy relaxation and ensures that "hot" electrons can be successfully extracted before they cool and lose energy to heat. The study establishes a mechanistic understanding of the complex charge-phonon dynamics in the lateral MoS2-graphene junctions that are key to optoelectronic and photovoltaic applications.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|