1
|
Fan Z, Mao X, Zhu M, Hu X, Li M, Huang L, Li J, Maimaiti T, Zuo X, Fan C, Li Q, Liu M, Tian Y. Probing Twist-Induced Endocytotic Membrane Fission using Anisotropic Gold Homodimers. Angew Chem Int Ed Engl 2025; 64:e202413244. [PMID: 39227862 DOI: 10.1002/anie.202413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Membrane fission involves a crucial step of lipid remodeling, in which the dynamin collar constricts and severs the tubulated lipid membrane at the neck of budding vesicles. Nevertheless, the difficulty in accurately determining the rotational dynamics of live endocytotic vesicles poses a limit on the elucidation of dynamin-induced membrane remodeling for endocytotic vesicle scission. Herein, we designed a DNA-modified gold homodimer (AuHD)-based anisotropic plasmonic probe with uniform surface chemistry, minimizing orientational fluctuation within vesicle encapsulation. Using AuHDs as cargos to image the dynamics of cargo-containing vesicles during endocytosis, we showed that, prior to detachment from plasma membrane, the cargo-containing vesicles underwent multiple intermittent twists of ~4° angular orientation relative to plasma membrane with a ~0.2 s dwell time. These findings suggest that the membrane torques resulting from dynamin actions in vivo constitute the pathway to membrane fission, potentially shedding light on how dynamin-mediated lipid remodeling orchestrates membrane fission.
Collapse
Affiliation(s)
- Zhiying Fan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Meng Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xingjie Hu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Tumala Maimaiti
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| |
Collapse
|
2
|
Drachuk I, Ramani N, Harbaugh S, Mirkin CA, Chávez JL. Implantable Fluorogenic DNA Biosensor for Stress Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39417681 DOI: 10.1021/acsami.4c08940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Implantable sensors that can monitor analytes related to cognitive and physiological status have gained significant focus in recent years. We have developed an implantable biosensor to detect dehydroepiandrosterone sulfate (DHEA-S), a biomarker related to stress. The biosensor strategy was based on the principle of forced intercalation (FIT) aptamers designed to detect subtle intramolecular changes during aptamer-target binding events. By incorporating a steroid-specific fluorogenic aptamer into a hydrogel, the sensitivity and biostability of the FIT biosensor fiber were improved, which were essential for designing implantable sensors to monitor biomarker levels in the living body. The polyethylenimine-based hydrogel chosen for this study produced an optically transparent cross-linked network with optimal microstructure, physicochemical, and mechanical properties, making it suitable for optical biosensors. The in vitro studies showed that the biosensor fiber was successfully activated in human serum and skin analogue, providing a linear response to physiological concentrations of the steroid. We believe that this type of implantable platform can be effective in monitoring more complex biomarkers associated with physiological or psychological health.
Collapse
Affiliation(s)
- Irina Drachuk
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
- UES, a BlueHalo Company, 4401 Dayton-Xenia Rd., Dayton, Ohio 45432, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Svetlana Harbaugh
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jorge L Chávez
- 711th Human Performance Wing, Human Effectiveness Directorate, AFRL, 2510 Fifth Street, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
3
|
Wang W, Li X, Zeng K, Lu Y, Jia B, Lv J, Wu C, Wang X, Zhang X, Zhang Z. Improved Catalytic Activity of Spherical Nucleic Acid Enzymes by Hybridization Chain Reaction and Its Application for Sensitive Analysis of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2024; 24:2325. [PMID: 38610537 PMCID: PMC11014268 DOI: 10.3390/s24072325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Conventional spherical nucleic acid enzymes (SNAzymes), made with gold nanoparticle (AuNPs) cores and DNA shells, are widely applied in bioanalysis owing to their excellent physicochemical properties. Albeit important, the crowded catalytic units (such as G-quadruplex, G4) on the limited AuNPs surface inevitably influence their catalytic activities. Herin, a hybridization chain reaction (HCR) is employed as a means to expand the quantity and spaces of G4 enzymes for their catalytic ability enhancement. Through systematic investigations, we found that when an incomplete G4 sequence was linked at the sticky ends of the hairpins with split modes (3:1 and 2:2), this would significantly decrease the HCR hybridization capability due to increased steric hindrance. In contrast, the HCR hybridization capability was remarkably enhanced after the complete G4 sequence was directly modified at the non-sticky end of the hairpins, ascribed to the steric hindrance avoided. Accordingly, the improved SNAzymes using HCR were applied for the determination of AFB1 in food samples as a proof-of-concept, which exhibited outstanding performance (detection limit, 0.08 ng/mL). Importantly, our strategy provided a new insight for the catalytic activity improvement in SNAzymes using G4 as a signaling molecule.
Collapse
Affiliation(s)
- Wenjun Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Yanyan Lu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Boyuan Jia
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Jianxia Lv
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China; (J.L.); (C.W.)
| | - Chenghao Wu
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China; (J.L.); (C.W.)
| | - Xinyu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Xinshuo Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| |
Collapse
|
4
|
Ji R, Wang L, Shang Y, Du S, Xiao Y, Dong W, Cui L, Gao R, Ren K. RNA Condensate as a Versatile Platform for Improving Fluorogenic RNA Aptamer Properties and Cell Imaging. J Am Chem Soc 2024; 146:4402-4411. [PMID: 38329936 DOI: 10.1021/jacs.3c09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fluorogenic RNA aptamers are valuable tools for cell imaging, but they still suffer from shortcomings such as easy degradation, limited photostability, and low fluorescence enhancement. Molecular crowding conditions enable the stabilization of the structure, promotion of folding, and improvement of activity of functional RNA. Based on artificial RNA condensates, here we present a versatile platform to improve fluorogenic RNA aptamer properties and develop sensors for target analyte imaging in living cells. Using the CUG repeat as a general tag to drive phase separation, various fluorogenic aptamer-based RNA condensates (FLARE) were prepared. We show that the molecular crowding of FLARE can improve the enzymatic resistance, thermostability, photostability, and binding affinity of fluorogenic RNA aptamers. Moreover, the FLARE systems can be modularly engineered into sensors (FLARES), which demonstrate enhanced brightness and sensitivity compared to free sensors dispersed in homogeneous solution. This scalable design principle provides new insights into RNA aptamer property regulation and cellular imaging.
Collapse
Affiliation(s)
- Ruoyang Ji
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Long Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yuzhe Shang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Songyuan Du
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yang Xiao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P.R. China
| | - Ruru Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
5
|
Li XQ, Jia YL, Zhang YW, Chen HY, Xu JJ. Intracellular activated logic nanomachines based on framework nucleic acids for low background detection of microRNAs in living cells. Chem Sci 2023; 14:7699-7708. [PMID: 37484658 PMCID: PMC10356544 DOI: 10.1039/d3sc01162c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 07/25/2023] Open
Abstract
DNA molecular machines based on DNA logic circuits show unparalleled potential in precision medicine. However, delivering DNA nanomachines into real biological systems and ensuring that they perform functions specifically, quickly and logically remain a challenge. Here, we developed an efficient DNA molecular machine integrating transfer-sensor-computation-output functions to achieve high fidelity detection of intracellular biomolecules. The introduction of pH nanoswitches enabled the nanomachines to be activated after entering the cell, and the spatial-confinement effect of the DNA triangular prism (TP) enables the molecular machine to process complex information at the nanoscale, with higher sensitivity and shorter response time than diffuse-dominated logic circuits. Such cascaded activation molecular machines follow the logic of AND to achieve specific capture and detection of biomolecules in living cells through a multi-hierarchical response, providing a new insight into the construction of efficient DNA molecular machines.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Dou Y, Huang Z, Li T, Maboyi N, Ding X, Song S, Su J. A DNA framework-based dual signal amplification biosensor for portable detection of SARS-CoV-2 and its mutations. Chem Commun (Camb) 2023. [PMID: 37366142 DOI: 10.1039/d3cc02526h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We developed a rapid and accurate biosensor to detect SARS-CoV-2 and distinguish its mutations. Benefitting from a DNA framework-modified ordered interface and a dual signal amplification strategy, our biosensor could detect SARS-CoV-2 with a detection limit down to 10 fM. It performed well on pseudo virus and SARS-CoV-2 RNA standard materials, revealing the potential application in disease diagnosis and spread, in combination with a home-made smartphone.
Collapse
Affiliation(s)
- Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - ZiYue Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Tie Li
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Nokuzola Maboyi
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Shiping Song
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
7
|
Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta 2023; 254:124133. [PMID: 36459871 DOI: 10.1016/j.talanta.2022.124133] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
8
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Wu D, Zhang W, Li T, Li F, Feng Q, Cheng X, Guo Y. In situ detection of miRNA-21 in MCF-7 cell-derived extracellular vesicles using the red blood cell membrane vesicle strategy. Chem Commun (Camb) 2023; 59:1987-1990. [PMID: 36723001 DOI: 10.1039/d2cc05954a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, we constructed a novel membrane fusion strategy for extracellular vesicles (EVs) and red blood cell membrane vesicles (RVs). A nanoscale space is formed, which can improve the efficiency of the probe reaction with miRNA-21, which allows the in situ fluorescence detection of miRNA-21 in EVs.
Collapse
Affiliation(s)
- Di Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. .,Linyi University, Linyi, 276000, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qingfang Feng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
10
|
Wang R, Liu Y, Xiao W, Yi Q, Jiang M, Guo R, Song L, Li M, Li F, Shi D, Zhao L, Huang W, Zuo X, Mao X. Framework Nucleic Acids as Blood-Retinal-Barrier-Penetrable Nanocarrier for Periocular Administration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:541-551. [PMID: 36534594 DOI: 10.1021/acsami.2c18042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing an ocular drugs delivery system that can permeate the outer blood-retinal barrier (oBRB) is crucial for the microinvasive or noninvasive treatment of ocular fundus diseases. However, due to the lack of a nanocarrier that can maintain structure and composition at the oBRB, only intravitreal injection at the eyeball can deliver therapeutics directly to the ocular fundus via paracellular and intercellular routes, despite the intraocular operations risks. Here, we demonstrated tetrahedral framework nucleic acids (tFNAs) can penetrate the oBRB and deliver therapeutic nucleic acids to the retina of the rat eye in vivo following subconjunctival injection. We also discovered that tFNAs were transported via a paracellular route across the intercellular tight junctions at the oBRB. The histology analysis for ocular layers indicated that individual and aptamer/doxorubicin-loaded tFNAs penetrated all layers of the posterior segment of the eyeball to reach the innermost retina and persisted for over 3 days with minimal systemic biodistribution. We expect that the programmability and penetrability of tFNAs will provide a promising method for drug delivery across oBRB and long-term sustenance at the target site via periocular administration to various tissues.
Collapse
Affiliation(s)
- Ruobing Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanhan Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenjuan Xiao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiuxue Yi
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Jiang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruiyan Guo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Lu Song
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Danli Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lingyi Zhao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weiyi Huang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
11
|
Mao X, Liu M, Li Q, Fan C, Zuo X. DNA-Based Molecular Machines. JACS AU 2022; 2:2381-2399. [PMID: 36465542 PMCID: PMC9709946 DOI: 10.1021/jacsau.2c00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/17/2023]
Abstract
Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Guo L, Zhang Y, Wang Y, Xie M, Dai J, Qu Z, Zhou M, Cao S, Shi J, Wang L, Zuo X, Fan C, Li J. Directing Multivalent Aptamer-Receptor Binding on the Cell Surface with Programmable Atom-Like Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202117168. [PMID: 35226386 DOI: 10.1002/anie.202117168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Multivalent interactions of biomolecules play pivotal roles in physiological and pathological settings. Whereas the directionality of the interactions is crucial, the state-of-the-art synthetic multivalent ligand-receptor systems generally lack programmable approaches for orthogonal directionality. Here, we report the design of programmable atom-like nanoparticles (aptPANs) to direct multivalent aptamer-receptor binding on the cell interface. The positions of the aptamer motifs can be prescribed on tetrahedral DNA frameworks to realize atom-like orthogonal valence and direction, enabling the construction of multivalent molecules with fixed aptamer copy numbers but different directionality. These directional-yet-flexible aptPAN molecules exhibit the adaptability to the receptor distribution on cell surfaces. We demonstrate the high-affinity tumor cell binding with a linear aptPAN oligomer (≈13-fold improved compared to free aptamers), which leads to ≈50 % suppression of cell growth.
Collapse
Affiliation(s)
- Linjie Guo
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yueyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yue Wang
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Xie
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiangbing Dai
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mo Zhou
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shuting Cao
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiang Li
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
13
|
Dou Y, Li Z, Su J, Song S. A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. BIOSENSORS 2022; 12:bios12050259. [PMID: 35624559 PMCID: PMC9138250 DOI: 10.3390/bios12050259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
Serum prostate-specific antigen (PSA) is a widely used for the detection of prostate cancer and is considered the most reliable biomarker. However, the currently reported detection methods cannot achieve rapid monitoring. Here, we report a novel electrochemical immunochromatography (EIC) system for clinically accurate PSA detection. First, we constructed a carbon interface modified with gold nanoflowers (Au NFs) based on screen-printed carbon electrodes (SPCE), which acted as nanostructures with larger specific surface area that increased the number of PSA capture antibodies and can further improve detection signal-to-noise (S/N) ratio. Then, we fabricated detection chips by combining the SPCE/Au NFs with EIC. Under optimized conditions, the proposed biosensor exhibits high accuracy, taking only 15 minutes to complete detection. By measuring the levels of PSA in clinical blood samples, the biosensor can successfully discriminate clinically diagnosed prostate cancer patients from healthy controls.
Collapse
Affiliation(s)
- Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
14
|
Li Z, Wang J, Zhou Z, O’Hagan MP, Willner I. Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis. ACS NANO 2022; 16:3625-3636. [PMID: 35184545 PMCID: PMC8945371 DOI: 10.1021/acsnano.1c06117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Transient dissipative dimerization and transient gated dimerization of DNA tetrahedra nanostructures are introduced as functional modules to emulate transient and gated protein-protein interactions and emergent protein-protein guided transient catalytic functions, operating in nature. Four tetrahedra are engineered to yield functional modules that, in the presence of pre-engineered auxiliary nucleic acids and the nicking enzyme Nt.BbvCI, lead to the fueled transient dimerization of two pairs of tetrahedra. The dynamic transient formation and depletion of DNA tetrahedra are followed by transient FRET signals generated by fluorophore-labeled tetrahedra. The integration of two inhibitors within the mixture of the four tetrahedra and two auxiliary modules, fueling the transient dimerization, results in selective inhibitor-guided gated transient dimerization of two different DNA tetrahedra dimers. Kinetic models for the dynamic transient dimerization and gated transient dimerization of the DNA tetrahedra are formulated and computationally simulated. The derived rate-constants allow the prediction and subsequent experimental validation of the performance of the systems under different auxiliary conditions. In addition, by appropriate modification of the four tetrahedra structures, the triggered gated emergence of selective transient catalytic functions driven by the two pairs of DNA tetrahedra dimers is demonstrated.
Collapse
|
15
|
Li CH, Lv WY, Yang FF, Zhen SJ, Huang CZ. Simultaneous Imaging of Dual microRNAs in Cancer Cells through Catalytic Hairpin Assembly on a DNA Tetrahedron. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12059-12067. [PMID: 35213135 DOI: 10.1021/acsami.1c23227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate detection and imaging of tumor-related microRNA (miRNA) in living cells hold great promise for early cancer diagnosis and prognosis. One of the challenges is to develop methods that enable the identification of multiple miRNAs simultaneously to further improve the detection accuracy. Herein, a simultaneous detection and imaging method of two miRNAs was established by using a programmable designed DNA tetrahedron nanostructure (DTN) probe that includes a nucleolin aptamer (AS1411), two miRNA capture strands, and two pairs of metastable catalytic hairpins at different vertexes. The DTN probe exhibited enhanced tumor cell recognition ability, excellent stability and biocompatibility, and fast miRNA recognition and reaction kinetics. It was found that the DTN probe could specifically enter tumor cells, in which the capture strand could hybridize with miRNAs and initiate the catalytic hairpin assembly (CHA) only when the overexpressed miR-21 and miR-155 existed simultaneously, resulting in a distinct fluorescence resonance energy transfer signal and demonstrating the feasibility of this method for tumor diagnosis.
Collapse
Affiliation(s)
- Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
16
|
Guo L, Zhang Y, Wang Y, Xie M, Dai J, Qu Z, Zhou M, Cao S, Shi J, Wang L, Zuo X, Fan C, Li J. Directing Multivalent Aptamer‐Receptor Binding on the Cell Surface with Programmable Atom‐Like Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Linjie Guo
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Yueyue Zhang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yue Wang
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mo Xie
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiangbing Dai
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| | - Mo Zhou
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Shuting Cao
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiye Shi
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Lihua Wang
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| | - Jiang Li
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| |
Collapse
|
17
|
Chen L, Luo S, Ge Z, Fan C, Yang Y, Li Q, Zhang Y. Unbiased Enrichment of Circulating Tumor Cells Via DNAzyme-Catalyzed Proximal Protein Biotinylation. NANO LETTERS 2022; 22:1618-1625. [PMID: 35156821 DOI: 10.1021/acs.nanolett.1c04583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circulating tumor cells (CTCs) are noninvasive biomarkers with great potential for assessing neoplastic diseases. However, the enrichment bias toward heterogeneous CTCs remains to be minimized. Herein, a DNAzyme-catalyzed proximal protein biotinylation (DPPB) strategy is established for unbiased CTCs enrichment, employing DNA-framework-based, aptamer-coupled DNAzymes that bind to the surface marker of CTCs and subsequently biotinylated membrane proteins in situ. The DNA framework enables the construction of multivalent DNAzyme and serves as steric hindrance to avoid undesired interaction between DNAzymes and aptamer, leading to efficient binding and biotinylation. Compared with a biotinylated-aptamer strategy, fivefold lower bias of cell subpopulations was achieved by DPPB before and after capture, which enabled a 4.6-fold performance for CTCs analysis in clinic blood samples. DPPB is envisioned to offer a new solution for CTC-based cancer diagnostics.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Yao C, Zhu C, Tang J, Ou J, Zhang R, Yang D. T Lymphocyte-Captured DNA Network for Localized Immunotherapy. J Am Chem Soc 2021; 143:19330-19340. [PMID: 34780151 DOI: 10.1021/jacs.1c07036] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient isolation of immune cells with high purity and low cell damage is important for immunotherapy and remains highly challenging. We herein report a cell capture DNA network containing polyvalent multimodules for the specific isolation and in situ incubation of T lymphocytes (T-cells). Two ultralong DNA chains synthesized by an enzymatic amplification process were rationally designed to include functional multimodules as cell anchors and immune adjuvants. Mutually complementary sequences facilitated the formation of a DNA network and encapsulation of T-cells, as well as offering cutting sites of a restriction enzyme for the responsive release of T-cells and immune adjuvants. The purity of captured tumor-infiltrating T-cells reached 98%, and the viability of T-cells maintained ∼90%. The T-cells-containing DNA network was further administrated to a tumor lesion for localized immunotherapy. Our work provides a robust nanobiotechnology for efficient isolation of immune cells and other biological particles.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Chenxu Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| |
Collapse
|
19
|
Feng Y, Liu Q, Chen M, Zhao X, Wang L, Liu L, Chen X. Framework nucleic acid programmed combinatorial delivery nanocarriers for parallel and multiplexed analysis. Chem Commun (Camb) 2021; 57:10935-10938. [PMID: 34596190 DOI: 10.1039/d1cc04691h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we report a framework nucleic acid programmed strategy to develop nanocarriers to precisely and independently package multiple homo- and heterogeneous cargos in vitro and in vivo, thereby enabling multiplexed analysis of aptamer-ligand complexes to distinguish normal people and patients with prostate enlargement via simple serum tests, as well as favorable imaging and discrimination of MCF-7, PC-3 and A549 cancer cells and normal QSG-7701 cells.
Collapse
Affiliation(s)
- Yinghui Feng
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Qi Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Miao Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China. .,College of Life Science, Central South University, Changsha 410083, Hunan, China
| | - Xinyi Zhao
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
20
|
Zhu N, Li X, Liu Y, Liu J, Wang Y, Wu X, Zhang Z. Dual amplified ratiometric fluorescence ELISA based on G-quadruplex/hemin DNAzyme using tetrahedral DNA nanostructure as scaffold for ultrasensitive detection of dibutyl phthalate in aquatic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147212. [PMID: 33905933 DOI: 10.1016/j.scitotenv.2021.147212] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP) is considered as one of the most widely used phthalate esters (PAEs), which has attracted worldwide concerns because of its potential threats to eco-environments and human health. Systematic investigations of DBP environmental occurrence contribute to the further risk assessment, which depends on effective and available analytical methods. In this study, an amplified ratiometric fluorescence ELISA was established for sensitive and high-throughput detection of DBP in the aquatic system based on a novel tetrahedral DNA nanostructure (TDN)-scaffolded-DNAzyme (Tetrazyme). Wherein, Tetrazyme was prepared by the precise folding of G-quadruplex sequence on three vertex angles of the TDN, together with hemin as the horseradish peroxidase (HRP)-mimicking enzyme. The rigid TDN avoided the local overcrowding effect to provide a reasonable spatial spacing on the interface for G-quadruplex sequence, increasing the collision chance between DNAzyme and substrates, improving the catalytic ability of DNAzyme effectively. Besides, streptavidin (SA) and biotin (bio) were used to anchor TDN and antibody, in which the specific binding of SA/bio could make more Tetrazyme conjugate on each signal element, resulting in the dual signal amplification. Meanwhile, the accuracy and precision were enhanced owing to the inherent built-in rectification to the environment from the dual output ratiometric fluorescence assay. Under the optimized conditions, the detection limit of this proposed method was 0.17 ng/mL (16 times lower than that of conventional ELISA using the same antibody) with a satisfactory accuracy (recoveries, 79.0%- 116.2%; CV, 2.1-6.5%). Overall, this platform provides a promising way for accurate, sensitive and rapid determination of DBP from environmental waters.
Collapse
Affiliation(s)
- Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ye Liu
- Zhenjiang Environment Monitoring Ctr, Zhenjiang 212013, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
21
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
22
|
Huang Q, Chen B, Shen J, Liu L, Li J, Shi J, Li Q, Zuo X, Wang L, Fan C, Li J. Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. J Am Chem Soc 2021; 143:10735-10742. [PMID: 34242004 DOI: 10.1021/jacs.1c04942] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
Collapse
Affiliation(s)
- Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiajun Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
23
|
Lai YC, Liu Z, Chen IA. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc Natl Acad Sci U S A 2021; 118:e2025054118. [PMID: 34001592 PMCID: PMC8166191 DOI: 10.1073/pnas.2025054118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Functional biomolecules, such as RNA, encapsulated inside a protocellular membrane are believed to have comprised a very early, critical stage in the evolution of life, since membrane vesicles allow selective permeability and create a unit of selection enabling cooperative phenotypes. The biophysical environment inside a protocell would differ fundamentally from bulk solution due to the microscopic confinement. However, the effect of the encapsulated environment on ribozyme evolution has not been previously studied experimentally. Here, we examine the effect of encapsulation inside model protocells on the self-aminoacylation activity of tens of thousands of RNA sequences using a high-throughput sequencing assay. We find that encapsulation of these ribozymes generally increases their activity, giving encapsulated sequences an advantage over nonencapsulated sequences in an amphiphile-rich environment. In addition, highly active ribozymes benefit disproportionately more from encapsulation. The asymmetry in fitness gain broadens the distribution of fitness in the system. Consistent with Fisher's fundamental theorem of natural selection, encapsulation therefore leads to faster adaptation when the RNAs are encapsulated inside a protocell during in vitro selection. Thus, protocells would not only provide a compartmentalization function but also promote activity and evolutionary adaptation during the origin of life.
Collapse
Affiliation(s)
- Yei-Chen Lai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ziwei Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
24
|
Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, Cui YX, Kong DM. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 2021; 12:7602-7622. [PMID: 34168817 PMCID: PMC8188511 DOI: 10.1039/d1sc00587a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yan Huang
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|