1
|
Wang Z, Li S, Gao S, Su J. Length-dependent water permeation through a graphene channel. Phys Chem Chem Phys 2024. [PMID: 39687933 DOI: 10.1039/d4cp03920c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Water confined in two-dimensional channels exhibits unique properties, such as rich morphology, specific phase transition and a low dielectric constant. In this work, molecular dynamics simulations have been used to study the water transport in two-dimensional graphene channels. The structures and dynamics of water under confinement show strong dependence on the channel length and thickness of the channels. In particular, there exists a critical channel length beyond which monolayer water forms square-like ice structures, leading to the rapid decrease in water flow that eventually ceases completely. The water flow for double-layer and three-layer systems exhibits a similar exponential decay but does not reach zero. The translocation time exhibits an excellent power-law behavior with an increase in the channel length, accounting for the exponential flow decay. The radial distribution function confirms the length-dependent liquid-to-ice phase transition of monolayer water and the liquid states for double-layer and three-layer systems. The formation of monolayer ice can be further supported by the increasing barriers in the potential of mean force and specific dipole distributions. Furthermore, the melting temperature of monolayer ice increases significantly with the increase in the channel length that can also be close to or even exceeds the boiling point at atmospheric pressure. These findings provide new physical insights into the extraordinary length-dependent water behaviors and suggest future experimental studies on high-temperature ice through the size control in nanochannels.
Collapse
Affiliation(s)
- Zi Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shiwu Gao
- Beijing Computational Science Research Center, Beijing 100193, China.
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Yang M, Yao N, Li X, Yu J, Zhang S, Ding B. Dual-Asymmetric Janus Membranes Based on Two-Dimensional Nanowebs with Superspreading Surface for High-Performance Desalination. ACS NANO 2024. [PMID: 39558489 DOI: 10.1021/acsnano.4c11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Distillation membranes with hydrophobic surfaces and defined pores are considered a promising solution for seawater desalination. Most existing distillation membranes exhibit three-dimensional (3D) stacking bulk structures, where the zigzag water-repellent channels often lead to limited permeability and high energy costs. Here, we created two-dimensional nanowebs directly from the polymer/sol solution to construct dual-asymmetric Janus membranes. By tailoring the phase separation rate, the polymer phase evolved into continuous hydrophilic webs in situ weld on the microporous hydrophobic layer. The webs possess true-nanoscale architectures (internal fiber diameter of ∼20 nm, pore size of ∼140 nm) with enhanced roughness, serving as a superspreading surface to reach a water contact angle of 0° in 1.7 s. Benefiting from the architecture and wettability dual asymmetries, the obtained Janus membrane shows high-efficiency desalination performance (salt rejection >99%, flux of 11 kg m-2 h-1, and energy efficiency of 79%) with a thickness of 6.7 μm. Such a fascinating nanofibrous web-based Janus membrane may inspire the design of advanced liquid separation materials.
Collapse
Affiliation(s)
- Ming Yang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ni Yao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoxi Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
3
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
4
|
Han S, Lu Z, Zhu J, Mai Z, Matsuyama H, He T, Zhang Y. Boosted Intracavity Aperture in Macrocyclic Amines Enabling Finely Regulated Microporous Membranes. NANO LETTERS 2024; 24:12382-12389. [PMID: 39258768 DOI: 10.1021/acs.nanolett.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations. In conjunction with the increased intracavity size, the water permeability follows an augmented trend of 3A-TMC, 4A1-TMC, and 4A2-TMC (TMC: trimesoyl chloride) while exhibiting increased molecular weight cut-offs due to larger free-volume elements and stronger pore interconnectivity. Our proposed macrocyclic amine design strategy provides a guideline for finely regulated microporous membranes with high potential in NF-related applications.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Zhen Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
6
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Kwon H, Calegari Andrade MF, Ardo S, Esposito DV, Pham TA, Ogitsu T. Confinement Effects on Proton Transfer in TiO 2 Nanopores from Machine Learning Potential Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31687-31695. [PMID: 38840582 DOI: 10.1021/acsami.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Improved understanding of proton transfer in nanopores is critical for a wide range of emerging applications, yet experimentally probing mechanisms and energetics of this process remains a significant challenge. To help reveal details of this process, we developed and applied a machine learning potential derived from first-principles calculations to examine water reactivity and proton transfer in TiO2 slit-pores. We find that confinement of water within pores smaller than 0.5 nm imposes strong and complex effects on water reactivity and proton transfer. Although the proton transfer mechanism is similar to that at a TiO2 interface with bulk water, confinement reduces the activation energy of this process, leading to more frequent proton transfer events. This enhanced proton transfer stems from the contraction of oxygen-oxygen distances dictated by the interplay between confinement and hydrophilic interactions. Our simulations also highlight the importance of the surface topology, where faster proton transport is found in the direction where a unique arrangement of surface oxygens enables the formation of an ordered water chain. In a broader context, our study demonstrates that proton transfer in hydrophilic nanopores can be enhanced by controlling pore size, surface chemistry, and topology.
Collapse
Affiliation(s)
- Hyuna Kwon
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Marcos F Calegari Andrade
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Shane Ardo
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Daniel V Esposito
- Chemical Engineering Department, Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, United States
| | - Tuan Anh Pham
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| |
Collapse
|
8
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
9
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
10
|
Guo H, Fang C, Li F, Cui W, Xiong R, Yang X, Zhu L. Tailor-made β-ketoenamine-linked covalent organic polymer nanofilms for precise molecular sieving. MATERIALS HORIZONS 2023; 10:5133-5142. [PMID: 37697817 DOI: 10.1039/d3mh00957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The membranes that accurately separate solutes with close molecular weights in harsh solvents are of crucial importance for the development of highly-precise organic solvent nanofiltration (OSN). The physicochemical structures of the membrane need to be rationally designed to achieve this goal, such as customized crosslinked networks, thickness, and pore size. Herein, we synthesize a type of covalent organic polymer (COP) nanofilms with tailor-made thickness and pore structure using a cyclic deposition strategy for precise molecular sieving. By elaborately designing monomer structures and controlling deposition cycle numbers, the COP nanofilms linked by robust β-ketoenamine blocks were endowed with sub-nanometer micropores and a linearly tunable thickness of 10-40 nm. The composite membranes integrating COP nanofilms exhibited adjustable solvent permeance. The membranes further demonstrated steep and finely-regulated rejection curves within the molecular weight range of 200 to 400 Da, where the difference value was as low as 40 Da. The efficient purification and concentration of the antibacterial drug and its intermediate was well achieved. Therefore, the exploited COP nanofilms markedly facilitate the application of microporous organic polymers for precise molecular separation in OSN.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fupeng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenshou Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ruiyan Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, P. R. China
| |
Collapse
|
11
|
Heiranian M, Fan H, Wang L, Lu X, Elimelech M. Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chem Soc Rev 2023. [PMID: 37889082 DOI: 10.1039/d3cs00395g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Water scarcity is one of the greatest societal challenges facing humanity. Reverse osmosis (RO) desalination, a widely used membrane-based technology, has proven to be effective to augment water supply in water-stressed regions of our planet. However, progress in the design and development of RO membranes has been limited. To significantly enhance the performance of RO membranes, it is essential to acquire a deep understanding of the membrane separation and transport mechanisms. In this tutorial review, we cover the pivotal historical developments in RO technology, examine the chemical and physical properties of RO membrane materials, and critically review the models and mechanisms proposed for water transport in RO membranes. Based on recent experimental and computational findings, we conduct a thorough analysis of the key transport models-the solution-diffusion and pore-flow models-to assess their validity for accurately describing water transport in RO membranes. Our analysis involves examining the experimental evidence in favor of the solution-diffusion mechanism. Specifically, we explain whether the water content gradient within the membrane, cited as evidence for the key assumption in the solution-diffusion model, can drive a diffusive transport through RO membranes. Additionally, we review the recent molecular dynamics simulations which support the pore-flow mechanism for describing water transport in RO membranes. We conclude by providing future research directions aimed at addressing key knowledge gaps in water transport phenomena in RO membranes, with the goal of advancing the development of next-generation RO membranes.
Collapse
Affiliation(s)
- Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, USA
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
12
|
Colla T, Telles IM, Arfan M, Dos Santos AP, Levin Y. Spiers Memorial Lecture: Towards understanding of iontronic systems: electroosmotic flow of monovalent and divalent electrolyte through charged cylindrical nanopores. Faraday Discuss 2023; 246:11-46. [PMID: 37395363 DOI: 10.1039/d3fd00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In many practical applications, ions are the primary charge carrier and must move through either semipermeable membranes or through pores, which mimic ion channels in biological systems. In analogy to electronic devices, the "iontronic" ones use electric fields to induce the charge motion. However, unlike the electrons that move through a conductor, motion of ions is usually associated with simultaneous solvent flow. A study of electroosmotic flow through narrow pores is an outstanding challenge that lies at the interface of non-equilibrium statistical mechanics and fluid dynamics. In this paper, we will review recent works that use dissipative particle dynamics simulations to tackle this difficult problem. We will also present a classical density functional theory (DFT) based on the hypernetted-chain approximation (HNC), which allows us to calculate the velocity of electroosmotic flows inside nanopores containing 1 : 1 or 2 : 1 electrolyte solution. The theoretical results will be compared with simulations. In simulations, the electrostatic interactions are treated using the recently introduced pseudo-1D Ewald summation method. The zeta potentials calculated from the location of the shear plane of a pure solvent are found to agree reasonably well with the Smoluchowski equation. However, the quantitative structure of the fluid velocity profiles deviates significantly from the predictions of the Smoluchowski equation in the case of charged pores with 2 : 1 electrolyte. For low to moderate surface charge densities, the DFT allows us to accurately calculate the electrostatic potential profiles and the zeta potentials inside the nanopores. For pores with 1 : 1 electrolyte, the agreement between theory and simulation is particularly good for large ions, for which steric effects dominate over the ionic electrostatic correlations. The electroosmotic flow is found to depend very strongly on the ionic radii. In the case of pores containing 2 : 1 electrolyte, we observe a reentrant transition in which the electroosmotic flow first reverses and then returns to normal as the surface change density of the pore is increased.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| | - Igor M Telles
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| | - Muhammad Arfan
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, Porto Alegre, RS, CEP 91501-970, Brazil.
| |
Collapse
|
13
|
Heydari A, Khatibi M, Ashrafizadeh SN. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys 2023; 25:26716-26736. [PMID: 37779455 DOI: 10.1039/d3cp03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This research explores ion transport behavior and functionality in a hybrid nanochannel that consists of two conical and cylindrical parts. The numerical investigation focuses on analyzing the length of each part in the nanochannel. The nanochannels are hybrid cavities embedded in a membrane, where the size of the conical part varies as equal to, larger than, or smaller than the cylindrical part. The nanochannel is coated with a polyelectrolyte layer that exhibits a dense charge density distribution. The charge density of the soft layer is described using the soft step distribution function. We study the electroosmotic flow, ionic current, rectification, and selectivity of the nanochannel versus bulk electrolyte concentration, the charge density of the polyelectrolyte layer, and decay length, while considering the effect of ionic partitioning. The steady-state Poisson-Nernst-Planck and Navier-Stokes equations are solved using the finite element method. The findings reveal that the nanochannel with a more extensive conical section demonstrates increased rectification, with the rectification factor rising from 1.4 to 2 at a bulk concentration of 100 mM. Additionally, the nanochannel with a longer cylindrical part exhibits improved selectivity under negative voltage conditions, while positive voltage introduces a different situation. The nanochannel with equal cylindrical and conical parts significantly affects conductivity by modifying the charge density in the soft layer, resulting in a 3.125-fold increase in conductivity under positive voltage when the charge density in the polyelectrolyte layer is raised from 25 to 100 mol m-3. This research focuses on creating intelligent nanochannels by controlling mass concentration, charge density, and collapse length, improving system performance, and optimizing properties. It also offers valuable insights into ion transport mechanisms in nanochannel systems, advancing our understanding in this field.
Collapse
Affiliation(s)
- Amirhossein Heydari
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
14
|
Arai N, Yamamoto E, Koishi T, Hirano Y, Yasuoka K, Ebisuzaki T. Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. NANOSCALE HORIZONS 2023; 8:652-661. [PMID: 36883765 DOI: 10.1039/d2nh00563h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a water pump that actively transports water molecules through nanochannels. Spatially asymmetric noise fluctuations imposed on the channel radius cause unidirectional water flow without osmotic pressure, which can be attributed to hysteresis in the cyclic transition between the wetting/drying states. We show that the water transport depends on fluctuations, such as white, Brownian, and pink noises. Because of the high-frequency components in white noise, fast switching of open and closed states inhibits channel wetting. Conversely, pink and Brownian noises generate high-pass filtered net flow. Brownian fluctuation leads to a faster water transport rate, whereas pink noise has a higher capability to overcome pressure differences in the opposite direction. A trade-off relationship exists between the resonant frequency of the fluctuation and the flow amplification. The proposed pump can be considered as an analogy for the reversed Carnot cycle, which is the upper limit of the energy conversion efficiency.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
- Computational Astrophysics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Takahiro Koishi
- Department of Applied Physics, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
| | | |
Collapse
|
15
|
Surya W, Yong CPY, Tyagi A, Bhushan S, Torres J. Anomalous Oligomerization Behavior of E. coli Aquaporin Z in Detergent and in Nanodiscs. Int J Mol Sci 2023; 24:ijms24098098. [PMID: 37175807 PMCID: PMC10178869 DOI: 10.3390/ijms24098098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporins are tetrameric integral membrane proteins that act as water channels, and can also permeabilize membranes to other solutes. The monomer appears to be the functional form despite all aquaporins being organized as tetramers, which therefore must provide a clear functional advantage. In addition to this quaternary organization, some aquaporins can act as adhesion molecules in membrane junctions, when tetramers located in opposing membranes interact via their extracellular domains. These stacked forms have been observed in a range of aquaporins, whether using lipidic membrane environments, in electron crystallography, or using detergent micelles, in single-particle cryo-electron microscopy (cryo-EM). In the latter technique, structural studies can be performed when the aquaporin is reconstituted into nanodiscs of lipids that are surrounded by a protein scaffold. During attempts to study E. coli Aquaporin Z (AqpZ), we have found that in some conditions these nanodiscs tend to form filaments that appear to be either thicker head-to-tail or thinner side-to-side stacks of nanodiscs. Nanodisc oligomerization was observed using orthogonal analytical techniques analytical ultra-centrifugation and mass photometry, although the nature of the oligomers (head-to-tail or side-to-side) could not be determined. Using the latter technique, the AqpZ tetramer itself formed oligomers of increasing size when solubilized only in detergent, which is consistent with multiple stacking of AqpZ tetramers. We observed images consistent with both of these filaments in negative staining EM conditions, but only thicker filaments in cryo-EM conditions. We hypothesize that the apparent nanodisc side-to-side arrangement that can only be visualized in negative staining conditions is related to artifacts due to the sample preparation. Filaments of any kind were not observed in EM when nanodiscs did not contain AqpZ, or after addition of detergent into the nanodisc cryo-EM preparation, at concentrations that did not disrupt nanodisc formation. To our knowledge, these filaments have not been observed in nanodiscs preparations of other membrane proteins. AqpZ, like other aquaporins has a charge asymmetry between the cytoplasmic (more positive) and the extracellular sides, which may explain the likely head-to-tail stacking observed, both in nanodisc preparations and also in detergent micelles.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Clare Pei Yii Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
16
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
17
|
Xu M, Zhu X, Zhu J, Wei S, Cong X, Wang Z, Yan Q, Weng L, Wang L. The recent advance of precisely designed membranes for sieving. NANOTECHNOLOGY 2023; 34:232003. [PMID: 36848663 DOI: 10.1088/1361-6528/acbf56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Developing new membranes with both high selectivity and permeability is critical in membrane science since conventional membranes are often limited by the trade-off between selectivity and permeability. In recent years, the emergence of advanced materials with accurate structures at atomic or molecular scale, such as metal organic framework, covalent organic framework, graphene, has accelerated the development of membranes, which benefits the precision of membrane structures. In this review, current state-of-the-art membranes are first reviewed and classified into three different types according to the structures of their building blocks, including laminar structured membranes, framework structured membranes and channel structured membranes, followed by the performance and applications for representative separations (liquid separation and gas separation) of these precisely designed membranes. Last, the challenges and opportunities of these advanced membranes are also discussed.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xianhu Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Jihong Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Siyuan Wei
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xuelong Cong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Zhangyu Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Pfeffermann J, Pohl P. Tutorial for Stopped-Flow Water Flux Measurements: Why a Report about "Ultrafast Water Permeation through Nanochannels with a Densely Fluorous Interior Surface" Is Flawed. Biomolecules 2023; 13:431. [PMID: 36979366 PMCID: PMC10046062 DOI: 10.3390/biom13030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Millions of years of evolution have produced proteinaceous water channels (aquaporins) that combine perfect selectivity with a transport rate at the edge of the diffusion limit. However, Itoh et al. recently claimed in Science that artificial channels are 100 times faster and almost as selective. The published deflation kinetics of vesicles containing channels or channel elements indicate otherwise, since they do not demonstrate the facilitation of water transport. In an illustrated tutorial on the experimental basis of stopped-flow measurements, we point out flaws in data processing. In contrast to the assumption voiced in Science, individual vesicles cannot simultaneously shrink with two different kinetics. Moreover, vesicle deflation within the dead time of the instrument cannot be detected. Since flawed reports of ultrafast water channels in Science are not a one-hit-wonder as evidenced by a 2018 commentary by Horner and Pohl in Science, we further discuss the achievable limits of single-channel water permeability. After analyzing (i) diffusion limits for permeation through narrow channels and (ii) hydrodynamics in the surrounding reservoirs, we conclude that it is unlikely to fundamentally exceed the evolutionarily optimized water-channeling performance of the fastest aquaporins while maintaining near-perfect selectivity.
Collapse
Affiliation(s)
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
19
|
Zheng H, Mou Z, Lim YJ, Liu B, Wang R, Zhang W, Zhou K. Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Han S, Zhu J, Uliana AA, Li D, Zhang Y, Zhang L, Wang Y, He T, Elimelech M. Microporous organic nanotube assisted design of high performance nanofiltration membranes. Nat Commun 2022; 13:7954. [PMID: 36575167 PMCID: PMC9794819 DOI: 10.1038/s41467-022-35681-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Microporous organic nanotubes (MONs) hold considerable promise for designing molecular-sieving membranes because of their high microporosity, customizable chemical functionalities, and favorable polymer affinity. Herein, we report the use of MONs derived from covalent organic frameworks to engineer 15-nm-thick microporous membranes via interfacial polymerization (IP). The incorporation of a highly porous and interpenetrated MON layer on the membrane before the IP reaction leads to the formation of polyamide membranes with Turing structure, enhanced microporosity, and reduced thickness. The MON-modified membranes achieve a remarkable water permeability of 41.7 L m-2 h-1 bar-1 and high retention of boron (78.0%) and phosphorus (96.8%) at alkaline conditions (pH 10), surpassing those of reported nanofiltration membranes. Molecular simulations reveal that introducing the MONs not only reduces the amine molecule diffusion toward the organic phase boundary but also increases membrane porosity and the density of water molecules around the membrane pores. This MON-regulated IP strategy provides guidelines for creating high-permeability membranes for precise nanofiltration.
Collapse
Affiliation(s)
- Shuangqiao Han
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Junyong Zhu
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Adam A. Uliana
- grid.47840.3f0000 0001 2181 7878Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
| | - Dongyang Li
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Yatao Zhang
- grid.207374.50000 0001 2189 3846School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 China
| | - Lin Zhang
- grid.13402.340000 0004 1759 700XKey Laboratory of Biomass Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yong Wang
- grid.412022.70000 0000 9389 5210College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009 China
| | - Tao He
- grid.9227.e0000000119573309Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Menachem Elimelech
- grid.47100.320000000419368710Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286 USA
| |
Collapse
|
21
|
Ren Y, Qi P, Wan Y, Chen C, Chen X, Feng S, Luo J. Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18018-18029. [PMID: 36445263 DOI: 10.1021/acs.est.2c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO42-), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel "etching-swelling-planting" strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO42- ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (-OH and -COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.
Collapse
Affiliation(s)
- Yuling Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Pengfei Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin300387, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou341119, China
| | - Chulong Chen
- ZheJiang MEY Membrane Technology Co., Ltd., Hangzhou310012, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
22
|
Shahbabaei M, Tang T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys Chem Chem Phys 2022; 24:29298-29327. [PMID: 36453147 DOI: 10.1039/d2cp03839k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (e.g., low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (e.g., shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, via molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Chen D, Gao F, Peng W, Song Y, Hu R, Zheng Z, Kang J, Cao Y, Xiang M. Artificial water channels engineered thin-film nanocomposite membranes for high-efficient application in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Constructing semi-oriented single-walled carbon nanotubes artificial water channels for realized efficient desalination of nanocomposite RO membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Liu Y, Wang K, Zhou Z, Wei X, Xia S, Wang XM, Xie YF, Huang X. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15220-15237. [PMID: 36330774 DOI: 10.1021/acs.est.2c06579] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the high risks brought about by organic micropollutants (OMPs), nanofiltration (NF) processes have been playing a vital role in advanced water and wastewater treatment, owing to the high membrane performance in rejection of OMPs, permeation of water, and passage of mineral salts. Though numerous studies have been devoted to evaluating and technically enhancing membrane performance in removing various OMPs, the trade-off effect between water permeance and water/OMP selectivity for state-of-the-art membranes remains far from being understood. Knowledge of this effect is significant for comparing and guiding membrane development works toward cost-efficient OMP removal. In this work, we comprehensively assessed the performance of 88 NF membranes, commercialized or newly developed, based on their water permeance and OMP rejection data published in the literature. The effectiveness and underlying mechanisms of various modification methods in tailoring properties and in turn performance of the mainstream polyamide (PA) thin-film composite (TFC) membranes were quantitatively analyzed. The trade-off effect was demonstrated by the abundant data from both experimental measurements and machine learning-based prediction. On this basis, the advancement of novel membranes was benchmarked by the performance upper-bound revealed by commercial membranes and lab-made PA membranes. We also assessed the potentials of current NF membranes in selectively separating OMPs from inorganic salts and identified the future research perspectives to achieve further enhancement in OMP removal and salt/OMP selectivity of NF membranes.
Collapse
Affiliation(s)
- Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Zixuan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- Environmental Engineering Programs, The Pennsylvania State University, Middletown, Pennsylvania17057, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
27
|
Sicard F, Yazaydin AO. Biohybrid Membrane Formation by Directed Insertion of Aquaporin into a Solid-State Nanopore. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48029-48036. [PMID: 36244033 PMCID: PMC9614727 DOI: 10.1021/acsami.2c14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Biohybrid nanopores combine the durability of solid-state nanopores with the precise structure and function of biological nanopores. Particular care must be taken to control how biological nanopores adapt to their surroundings once they come into contact with the solid-state nanopores. Two major challenges are to precisely control this adaptability under dynamic conditions and provide predesigned functionalities that can be manipulated for engineering applications. In this work, we report on the computational design of a distinctive class of biohybrid active membrane layers, built from the directed-insertion of an aquaporin-incorporated lipid nanodisc into a model alkyl-functionalized silica pore. We show that in an aqueous environment when a pressure difference exists between the two sides of the solid-state nanopore, the preferential interactions between the hydrocarbon tail of the lipid molecules that surround the aquaporin protein and the alkyl group functionalizing the interior surface of the silica nanopore enable the insertion of the aquaporin-incorporated lipid shell into the nanopore by forcing out the water molecules. The same preferential interactions are responsible for the structural stability of the inserted aquaporin-incorporated lipid shell as well as the water sealing properties of the lipid-alkyl interface. We further show that the aquaporin protein stabilized in the alkyl-functionalized silica nanopore preserves its biological structure and function in both pure and saline water, and, remarkably, its water permeability is equal to the one measured in the biological environment. The designed biohybrid membrane could pave the way for the development of durable transformative devices for water filtration.
Collapse
|
28
|
Hydrophilic montmorillonite in tailoring the structure and selectivity of polyamide membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Sharma L, Ye L, Yong C, Seetharaman R, Kho K, Surya W, Wang R, Torres J. Aquaporin-based membranes made by interfacial polymerization in hollow fibers: Visualization and role of aquaporin in water permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Zhang Y, Lin Y, Ying J, Zhang W, Jin Y, Matsuyama H, Yu J. Highly Efficient Monovalent Ion Transport Enabled by Ionic
Crosslinking‐Induced
Nanochannels. AIChE J 2022. [DOI: 10.1002/aic.17825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yiren Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Yuqing Lin
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Jiadi Ying
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Wei Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Yan Jin
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering Kobe University Kobe Japan
| | - Jianguo Yu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
31
|
Güvensoy-Morkoyun A, Velioğlu S, Ahunbay MG, Tantekin-Ersolmaz ŞB. Desalination Potential of Aquaporin-Inspired Functionalization of Carbon Nanotubes: Bridging Between Simulation and Experiment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28174-28185. [PMID: 35675202 PMCID: PMC9227712 DOI: 10.1021/acsami.2c03700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/22/2023]
Abstract
Outstanding water/ion selectivity of aquaporins paves the way for bioinspired desalination membranes. Since the amino acid asparagine (Asn) plays a critical role in the fast water conduction of aquaporins through hydrogen bonding interactions, we adapted this feature by functionalizing carbon nanotubes (CNTs) with Asn. We also studied a nonpolar amino acid and carboxylate functional groups for comparison. Computation of the ideal performance of individual CNTs at atomistic scale is a powerful tool for probing the effect of tip-functionalized CNTs on water and ion transport mechanism. Molecular simulation study suggests that steric effects required for ion rejection compromise fast water conductivity; however, an Asn functional group having polarity and hydrogen bonding capability can be used to balance this trade-off to some extent. To test our hypothesis, we incorporated functionalized CNTs (f-CNTs) into the in situ polymerized selective polyamide (PA) layer of thin film nanocomposite membranes and compared their experimental RO desalination performance. The f-CNTs were found to change the separation environment through modification of cross-linking density, thickness, and hydrophilicity of the PA layer. Asn functionalization led to more cross-linked and thinner PA layer while hydrophilicity is improved compared to other functional groups. Accordingly, water permeance is increased by 25% relative to neat PA with a salt rejection above 98%. Starting from the nanomaterial itself and benefiting from molecular simulation, it is possible to design superior membranes suited for practical applications.
Collapse
Affiliation(s)
- Aysa Güvensoy-Morkoyun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
| | - Sadiye Velioğlu
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
- Institute
of Nanotechnology, Gebze Technical University, Kocaeli, 41400, Turkey
| | - M. Göktuğ Ahunbay
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
| | - Ş. Birgül Tantekin-Ersolmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
- . Tel.: +90-212-2856152
| |
Collapse
|
32
|
Tu L, Qiu S, Li Y, Chen X, Han Y, Li J, Xiong X, Sun Y, Li H. Fabrication of Redox-Controllable Bioinspired Nanochannels for Precisely Regulating Protein Transport. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27421-27426. [PMID: 35657807 DOI: 10.1021/acsami.2c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox regulation is an inherent feature of nature and plays a crucial role in the transport of ions/small molecules. However, whether redox status affects the biomolecule transport remains largely unknown. To explore the effects of redox status on biomolecule transport, herein, we constructed a glutathione/glutathione disulfide (GSH/GSSG)-driven and pillar[5]arene (P5)-modified artificial nanochannel for protein transport. The results indicate that hemoglobin (Hb) protein is selectively and effectively transported across the GSH-driven P5-modified nanochannel, which suggests that the redox status of the nanochannel could affect the process of protein transport. Therefore, this redox-driven nanochannel could provide a potential application for biomolecule detection and redox-controllable biomolecular drug release.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China
| | - Xiaoya Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, P. R. China
| | - Yunfeng Han
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Junrong Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaoxing Xiong
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou 313099, P.R. China
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
33
|
Chatterjee S, Zamani E, Farzin S, Evazzade I, Obewhere OA, Johnson TJ, Alexandrov V, Dishari SK. Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. JACS AU 2022; 2:1144-1159. [PMID: 35647599 PMCID: PMC9131371 DOI: 10.1021/jacsau.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Poor ionic conductivity of the catalyst-binding, sub-micrometer-thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1-2 orders of magnitude higher than Nafion at 20-25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us to demonstrate the role of macrocyclic cavities in boosting the proton conductivity. The systematic self-assembly of calix-2 chains into ellipsoids in thin films was evidenced from atomic force microscopy and grazing incidence small-angle X-ray scattering measurements. Moreover, the likelihood of alignment and stacking of macrocyclic units, the presence of one-dimensional water wires across this macrocycle stacks, and thus the formation of long-range proton conduction pathways were suggested by atomistic simulations. We not only did see an unprecedented improvement in thin-film proton conductivity but also saw an improvement in proton conductivity of bulk membranes when calix-2 was added to the Nafion matrices. Nafion-calix-2 composite membranes also took advantage of the asymmetric charge distribution across calix[4]arene repeat units collectively and exhibited voltage-gating behavior. The inclusion of molecular macrocyclic cavities into the ionomer chemical structure can thus emerge as a promising design concept for highly efficient ion-conducting and ion-permselective materials for sustainable energy applications.
Collapse
Affiliation(s)
| | | | | | - Iman Evazzade
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Oghenetega Allen Obewhere
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Tyler James Johnson
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
34
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
35
|
Yong H, He X, Merlitz H. Connection between Intrapore Free Energy, Molecule Permeation, and Selectivity of Nanofiltration Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huaisong Yong
- Department of Polymer Materials and Engineering, School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, China
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| | - Xianru He
- Department of Polymer Materials and Engineering, School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, China
| | - Holger Merlitz
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| |
Collapse
|
36
|
Zhao Y, Wang YN, Lai GS, Torres J, Wang R. Proteoliposome-Incorporated Seawater Reverse Osmosis Polyamide Membrane: Is the Aquaporin Water Channel Effect in Improving Membrane Performance Overestimated? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5179-5188. [PMID: 35349264 DOI: 10.1021/acs.est.1c08857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The water channel feature of the aquaporin (AQP) is considered to be the key in improving the permselectivity of AQP-based thin-film composite (TFC) polyamide (PA) membranes, yet much less attention has been paid to the physicochemical property changes of the PA layer induced by AQP-reconstituted proteoliposomes. This study systematically investigated the roles of proteoliposome constituents (liposome/detergent/AQP) in affecting the physicochemical properties and performance of the membranes. For the first time, we demonstrated that the constituents in the proteoliposome could facilitate the formation of a PA layer with enlarged protuberances and thinner crumples, resulting in a 79% increase in effective surface area and lowering of hydraulic resistance for filtration. These PA structural changes of the AQP-based membrane were found to contribute over 70% to the water permeability increase via comparing the separation performance of the membranes prepared with liposome, detergent, and proteoliposome, respectively, and one proteoliposome-ruptured membrane. The contribution from the AQP water channel feature was about 27% of water permeability increase in the current study, attributed to only ∼20% vesicle coverage in the PA matrix, and this contribution may be easily lost as a result of vesicle rupture during the real seawater reverse osmosis process. This study reveals that the changed morphology dominates the performance improvement of the AQP-based PA membrane and well explains why the actual AQP-based PA membranes cannot acquire the theoretical water/salt selectivity of a biomimetic AQP membrane, deepening our understanding of the AQP-based membranes.
Collapse
Affiliation(s)
- Yali Zhao
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Gwo Sung Lai
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
37
|
Heiranian M, DuChanois RM, Ritt CL, Violet C, Elimelech M. Molecular Simulations to Elucidate Transport Phenomena in Polymeric Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3313-3323. [PMID: 35235312 DOI: 10.1021/acs.est.2c00440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite decades of dominance in separation technology, progress in the design and development of high-performance polymer-based membranes has been incremental. Recent advances in materials science and chemical synthesis provide opportunities for molecular-level design of next-generation membrane materials. Such designs necessitate a fundamental understanding of transport and separation mechanisms at the molecular scale. Molecular simulations are important tools that could lead to the development of fundamental structure-property-performance relationships for advancing membrane design. In this Perspective, we assess the application and capability of molecular simulations to understand the mechanisms of ion and water transport across polymeric membranes. Additionally, we discuss the reliability of molecular models in mimicking the structure and chemistry of nanochannels and transport pathways in polymeric membranes. We conclude by providing research directions for resolving key knowledge gaps related to transport phenomena in polymeric membranes and for the construction of structure-property-performance relationships for the design of next-generation membranes.
Collapse
Affiliation(s)
- Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
38
|
Electrosprayed polyamide nanofiltration membrane with uniform and tunable pores for sub-nm precision molecule separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120131] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ritt CL, Liu M, Pham TA, Epsztein R, Kulik HJ, Elimelech M. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. SCIENCE ADVANCES 2022; 8:eabl5771. [PMID: 35030018 PMCID: PMC8759746 DOI: 10.1126/sciadv.abl5771] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Designing single-species selective membranes for high-precision separations requires a fundamental understanding of the molecular interactions governing solute transport. Here, we comprehensively assess molecular-level features that influence the separation of 18 different anions by nanoporous cellulose acetate membranes. Our analysis identifies the limitations of bulk solvation characteristics to explain ion transport, highlighted by the poor correlation between hydration energy and the measured permselectivity (R2 = 0.37). Entropy-enthalpy compensation, spanning 40 kilojoules per mole, leads to a free-energy barrier (∆G‡) variation of only ~8 kilojoules per mole across all anions. We apply machine learning to elucidate descriptors for energetic barriers from a set of 126 collected features. Notably, electrostatic features account for 75% of the overall features used to describe ∆G‡, despite the relatively uncharged state of cellulose acetate. Our work presents an approach for studying ion transport across nanoporous membranes that could enable the design of ion-selective membranes.
Collapse
Affiliation(s)
- Cody L. Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (M.E.); (H.J.K.)
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Corresponding author. (M.E.); (H.J.K.)
| |
Collapse
|
40
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
41
|
Kocherginsky N. Biomimetic Membranes without Proteins but with Aqueous Nanochannels and Facilitated Transport. Minireview. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [PMCID: PMC8675542 DOI: 10.1134/s251775162106010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- N. Kocherginsky
- NEXT-ChemX, Department of Chemistry, University of Illinois, 61801 Urbana, Illinois USA
| |
Collapse
|
42
|
Zhao WJ, Liang L, Kong Z, Shen JW. A review on desalination by graphene-based biomimetic nanopore: From the computational modelling perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Guan T, Cheng M, Zeng L, Chen X, Xie Y, Lei Z, Ruan Q, Wang J, Cui S, Sun Y, Li H. Engineering the Redox-Driven Channel for Precisely Regulating Nanoconfined Glutathione Identification and Transport. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49137-49145. [PMID: 34623797 DOI: 10.1021/acsami.1c12061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioinspired artificial nanochannels for molecular and ionic transport have extensive applications. However, it is still a huge challenge to achieve an intelligent transport system with high selectivity/efficiency and controllability. Inspired by glutathione transport across the plasma membrane via redox regulation, we herein designed and fabricated a redox-reactive artificial nanochannel based on the host-guest chemical strategy. The nanochannel platform achieved high selectivity/efficiency for the identification and transmission of glutathione in the confined space. In addition, this nanochannel can switch between the ON and OFF states through the redox reaction. This redox-regulated system can provide a potential application for detection/binding of biological analytes and redox-controlled drug release.
Collapse
Affiliation(s)
- Tianpei Guan
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lisi Zeng
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Xiaoya Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuan Xie
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Shaoguan 512026, P. R. China
| | - Ziying Lei
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Qiang Ruan
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Jin Wang
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Shuzhong Cui
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
44
|
Gu Y, Distler ME, Cheng HF, Huang C, Mirkin CA. A General DNA-Gated Hydrogel Strategy for Selective Transport of Chemical and Biological Cargos. J Am Chem Soc 2021; 143:17200-17208. [PMID: 34614359 DOI: 10.1021/jacs.1c08114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The selective transport of molecular cargo is critical in many biological and chemical/materials processes and applications. Although nature has evolved highly efficient in vivo biological transport systems, synthetic transport systems are often limited by the challenges associated with fine-tuning interactions between cargo and synthetic or natural transport barriers. Herein, deliberately designed DNA-DNA interactions are explored as a new modality for selective DNA-modified cargo transport through DNA-grafted hydrogel supports. The chemical and physical characteristics of the cargo and hydrogel barrier, including the number of nucleic acid strands on the cargo (i.e., the cargo valency) and DNA-DNA binding strength, can be used to regulate the efficiency of cargo transport. Regimes exist where a cargo-barrier interaction is attractive enough to yield high selectivity yet high mobility, while there are others where the attractive interactions are too strong to allow mobility. These observations led to the design of a DNA-dendron transport tag, which can be used to universally modify macromolecular cargo so that the barrier can differentiate specific species to be transported. These novel transport systems that leverage DNA-DNA interactions provide new chemical insights into the factors that control selective cargo mobility in hydrogels and open the door to designing a wide variety of drug/probe-delivery systems.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Max E Distler
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ho Fung Cheng
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chi Huang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
45
|
|
46
|
Lee CS, Kim I, Jang JW, Yoon DS, Lee YJ. Aquaporin-Incorporated Graphene-Oxide Membrane for Pressurized Desalination with Superior Integrity Enabled by Molecular Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101882. [PMID: 34397173 PMCID: PMC8529452 DOI: 10.1002/advs.202101882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Indexed: 05/06/2023]
Abstract
Aquaporins (AQPs), the natural water channel, have been actively investigated for overcoming the limitations of conventional desalination membranes. An AQP-based biomimetic high-pressure desalination membrane is designed by tethering AQP-carrying red blood cell membrane (RBCM) vesicles onto graphene oxide (GO). RBCMs with AQPs are incorporated into GO based on the molecular recognition between the integrin of RBCM and Arginine-Glycine-Aspartate (RGD) ligand on the GO surface. GO is pre-functionalized with the Glycine-Arginine-Glycine-Aspartate-Serine peptide to capture RBCMs. RBCMs are inserted between GO flakes through the material-specific interaction between integrin of RBCM and RGD ligand, thus ensuring sufficient coverage of channels/defects in the GO for the full functioning of the AQPs. The incorporated AQPs are not completely fixed at the GO, as tethering is mediated by the integrin-RGD pair, and suitable AQP flexibility for appropriate functioning is guaranteed without frictional hindrance from the solid substrate. The integrity of the GO-RBCMs binding can provide mechanical strength for enduring high-pressure reverse-osmosis conditions for treating large amounts of water. This biomimetic membrane exhibits 99.1% NaCl rejection and a water permeance of 7.83 L m-2 h-1 bar-1 at 8 bar with a 1000-ppm NaCl feed solution, which surpasses the upper-bound line of current state-of-the-art membranes.
Collapse
Affiliation(s)
- Chang Seon Lee
- Department of Energy EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Insu Kim
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jae Won Jang
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dae sung Yoon
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yun Jung Lee
- Department of Energy EngineeringHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
47
|
Lu C, Hu C, Ritt CL, Hua X, Sun J, Xia H, Liu Y, Li DW, Ma B, Elimelech M, Qu J. In Situ Characterization of Dehydration during Ion Transport in Polymeric Nanochannels. J Am Chem Soc 2021; 143:14242-14252. [PMID: 34431669 DOI: 10.1021/jacs.1c05765] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transport of hydrated ions across nanochannels is central to biological systems and membrane-based applications, yet little is known about their hydrated structure during transport due to the absence of in situ characterization techniques. Herein, we report experimentally resolved ion dehydration during transmembrane transport using modified in situ liquid ToF-SIMS in combination with MD simulations for a mechanistic reasoning. Notably, complete dehydration was not necessary for transport to occur across membranes with sub-nanometer pores. Partial shedding of water molecules from ion solvation shells, observed as a decrease in the average hydration number, allowed the alkali-metal ions studied here (lithium, sodium, and potassium) to permeate membranes with pores smaller than their solvated size. We find that ions generally cannot hold more than two water molecules during this sterically limited transport. In nanopores larger than the size of the solvation shell, we show that ionic mobility governs the ion hydration number distribution. Viscous effects, such as interactions with carboxyl groups inside the membrane, preferentially hinder the transport of the mono- and dihydrates. Our novel technique for studying ion solvation in situ represents a significant technological leap for the nanofluidics field and may enable important advances in ion separation, biosensing, and battery applications.
Collapse
Affiliation(s)
- Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xin Hua
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hailun Xia
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingya Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Da-Wei Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
48
|
DuChanois RM, Porter CJ, Violet C, Verduzco R, Elimelech M. Membrane Materials for Selective Ion Separations at the Water-Energy Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101312. [PMID: 34396602 DOI: 10.1002/adma.202101312] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Indexed: 06/13/2023]
Abstract
Synthetic polymer membranes are enabling components in key technologies at the water-energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water-energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion-membrane interactions is described. In view of the limitations of polymeric membranes, three material classes-porous crystalline materials, 2D materials, and discrete biomimetic channels-are highlighted as possible candidates for ion-selective membranes owing to their molecular-level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
Collapse
Affiliation(s)
- Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA
| | - Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA
| |
Collapse
|
49
|
Takahashi T, Matsui T, Hengphasatporn K, Shigeta Y. A Practical Prediction of Log Po/w through Semiempirical Electronic Structure Calculations with Dielectric Continuum Model. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teruyuki Takahashi
- Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Toru Matsui
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| |
Collapse
|
50
|
Shao DD, Wang L, Yan XY, Cao XL, Shi T, Sun SP. Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|